Preview

Food systems

Advanced search

Neophobia: socio-ethical problems of innovative technologies of the food industry

https://doi.org/10.21323/2618-9771-2022-5-4-308-318

Abstract

The purpose of this review work is to consider the impact of socio-ethical problems on the acceptance of new food products by potential consumers and the issues  of manufacturers of these products when introducing innovative technologies. The causes  of neophobia of innovative technologies in the food industry are considered on specific examples of the use of nanotechnology, genetic modification technologies, ionization and processing by electromagnetic fields, as well as 3D food printing. It is noted that the public is little aware of innovative food technologies, while its attitude depends on how these technologies are used  and promoted. Proper public  information is critical to the  long-term success of introducing and  developing innovative technologies in the  food industry. It is shown  that the  modern intensive development of information technologies, together with a synergistic set of innovative food technologies, allows  making  a gradual transition to the  production of personalized digital food systems that have functionality, good taste, and safety  with minimal negative impact on the environment.

About the Author

I. T. Smykov
All-Russian Scientific Research Institute of Butter- and Cheesemaking
Russian Federation

Igor T. Smykov - Doctor  of Technical Sciences, Chief  Researcher, Department of Physical Chemisry, All-Russian Scientific Research Institute  of Butter- and Cheesemaking.

19, Krasnoarmeysky Boulevard, Uglich, 152613, Yaroslavl Region

Tel.: +7–48532–9–81–21



References

1. Siegrist, M., Hartmann, C. (2020). Consumer acceptance of novel food technologies. Nature Food, 1(6), 343–350. https://doi.org/10.1038/s43016-020-0094-x

2. Pliner, P., Hobden, K. (1992). Development of a scale to measure the trait of food neophobia in humans. Appetite, 19(2), 105–120. https://doi.org/10.1016/0195-6663(92)90014-W

3. Cooke, L. J, Haworth, C. M. A., Wardle, J. (2007). Genetic and environmental influences on children’s food neophobia, American Journal of Clinical Nutrition, 86(2), 428–433. https://doi.org/10.1093/ajcn/86.2.428

4. Meijer, G. W., Lähteenmäki, L., Stadler, R. H., Weiss, J. (2020). Issues surrounding consumer trust and acceptance of existing and emerging food processing technologies. Critical Reviews in Food Science and Nutrition, 61(1), 97–115. https://doi.org/10.1080/10408398.2020.1718597

5. Cattaneo, C., Lavelli, V., Proserpio, C., Laureati, M., Pagliarini, E. (2018). Consumers’ attitude towards food by-products: the influence of food technology neophobia, education and information. International Journal of Food Science and Technology, 54(3), 679–687. https://doi.org/10.1111/ijfs.13978

6. Kaptan, G., Fischer, A. R. H., Frewer, L. J. (2017). Extrapolating understanding of food risk perceptions to emerging food safety cases. Journal of Risk Research, 21(8), 996–1018. https://doi.org/10.1080/13669877.2017.1281330

7. Lamba, A., Garg, V. (2018). Nanotechnology approach in food science: A review. International Journal of Food Sciences and Nutrition, 3(2), 183–186.

8. Ramkumar, C., Vishwanatha, A., Saini, R. (2019). Regulatory Aspects of Nanotechnology for Food Industry. Chapter in a book: Nanotechnology Applications in Dairy Science: Packaging, Processing, and Preservation, Dasarahally-Huligowda, L. K., Goyal M. R., Suleria H. A. R (Eds.) pp. 168–184. Apple Academic Press, New York. https://doi.org/10.1201/9780429425370

9. He, X., Deng, H., Hwang, H.-M. (2019). The current application of nanotechnology in food and agriculture. Journal of Food and Drug Analysis, 27(1), 1–21. https://doi.org/10.1016/j.jfda.2018.12.002

10. Sahani, S., Sharma, Y. C. (2020). Advancements in applications of nanotechnology in global food industry. Food Chemistry, 342, Article 128318. https://doi.org/10.1016/j.foodchem.2020.128318

11. Rizvi, S. S. H., Moraru, C. I., Bouwmeester, H., Kampers, F. W. H., Cheng, Y. (2022). Nanotechnology and food safety, pp. 325–340. Chapter in book: Ensuring Global Food Safety, A. Martinović, S. Oh, H. Lelieveld (Eds.), Academic Press, P. 541. https://doi.org/10.1016/B978-0-12-816011-4.00016-1

12. Chelliah, R., Madar, I. H., Sultan, G., Begum, M., Pahi, B., Tayubi, I. A. et al. (2023). Risk assessment and regulatory decision-making for nanomaterial use in agriculture. Chapter in a book: Engineered Nanomaterials for Sustainable Agricultural Production, Soil Improvement and Stress Management: Plant Biology, sustainability and climate change, A. Husen (Ed.), Academic Press, pp. 413–430. https://doi.org/10.1016/B978-0-323-91933-3.00009-X

13. Shafiq, M., Anjum, S., Hano, C., Anjum, I., Abbasi, B. H. (2020). An overview of the applications of nanomaterials and nanodevices in the food industry. Foods, 9(2), Article 148. https://doi.org/10.3390/foods9020148

14. Stilgoe, J., Owen, R., Macnaghten, P. (2020). Developing a framework for responsible innovation. Chapter in a book: The Ethics of Nanotechnology, Geoengineering and Clean Energy, A. Maynard, J. Stilgoe (Eds.). Routledge, London, P. 544. https://doi.org/10.4324/9781003075028

15. Smykov, I. T. (2020). Nanotechnology in the Dairy Industry: Benefits and Risks, pp. 277–332. Chapter in a book: The ELSI Handbook of Nanotechnology: Risk, Safety, ELSI and Commercialization, Hussain C. M. (Ed.) Scrivener Publishing LLC. https://doi.org/10.1002/9781119592990.ch11

16. Sadeghi, R., Rodriguez, R. J., Yao, Y., Kokini, J. L. (2017). Advances in nanotechnology as they pertain to food and agriculture: Benefits and risks. Annual Review of Food Science and Technology, 8, 467–492. https://doi.org/10.1146/annurev-food-041715–033338

17. Augustin, M. A., Riley, M., Stockmann, R., Bennett, L., Kahl, A., Lockett, T. et al. (2016). Role of food processing in food and nutrition security. Trends in Food Science and Technology, 56, 115–125. https://doi.org/10.1016/j.tifs.2016.08.005

18. Martirosyan, A., Schneider, Y.-J. (2014). Engineered nanomaterials in food: implications for food safety and consumer health. International Journal of Environmental Research and Public Health, 11(6), 5720–5750. https://doi.org/10.3390/ijerph110605720

19. Iavicoli, I., Leso, V., Beezhold, D. H., Shvedova, A. A. (2017). Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology, 329, 96–111. https://doi.org/10.1016/j.taap.2017.05.025

20. Berekaa, M. M. (2015). Nanotechnology in food industry; advances in food processing, packaging and food safety. International Journal of Current Microbiology and Applied Sciences, 4(5), 345–357.

21. Radha, K., Thomas, A., Sathian, C. T. (2014). Application of nanotechnology in dairy industry: prospects and challenges — A Review. Indian Journal of Dairy Science, 67(5), 367–374.

22. Huang, Q., Yu, H., Ru, Q. (2010). Bioavailability and delivery of nutraceuticals using nanotechnology. Journal of Food Sciences, 75(1), R50-R57. https://doi.org/10.1111/j.1750-3841.2009.01457.x

23. McClements, D. J., Decker, E. A., Weiss, J. (2007). Emulsion-based delivery systems for lipophilic bioactive components. Journal of Food Sciences, 72(8), R109-R124. https://doi.org/10.1111/j.1750-3841.2007.00507.x

24. McClements, D. J., Decker, E. A., Park, Y., Weiss, J. (2009). Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Critical Reviews in Food Science and Nutrition, 49(6),б577–606. https://doi.org/10.1080/10408390902841529

25. Chau, C. -F., Wu, S.-H., Yen, G.-C. (2007). The development of regulations for food nanotechnology. Trends in Food Science and Technology, 18(5), 269–280, https://doi.org/10.1016/J.TIFS.2007.01.007

26. Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., Jimenez de Aberasturi, D, de Larramendi, I. R., Rojo, T. et al. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30(10), 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004

27. He, X., Fu, P., Aker, W. G., Hwang, H.-M. (2018). Toxicity of engineered nanomaterials mediated by nano–bio–eco interactions. Journal of Environmental Science and Health, Part C Environmental Carcinogenesis and Ecotoxicology Reviews, 36(1), 21–42. https://doi.org/10.1080/10590501.2017.1418793

28. Sodano, V., Gorgitano, M. T., Verneau, F. (2016). Consumer acceptance of food nanotechnology in Italy. British Food Journal, 118(3), 714–733. https://doi.org/10.1108/BFJ-06-2015-0226

29. Schnettler, B., Crisóstomo, G., Sepúlveda, J., Mora, M., Lobos, G., Miranda H. et al. (2013). Food neophobia, nanotechnology and satisfaction with life. Appetite, 69, 71–79. https://doi.org/10.1016/j.appet.2013.05.014

30. Damsbo-Svendsen, M., BomFrøst, M., Olsen, A. (2017). Development of novel tools to measure food neophobia in children. Appetite, 113, 255–263. https://doi.org/10.1016/j.appet.2017.02.035

31. Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., Cummins, E. (2012). Nanotechnologies in the food industry — Recent developments, risks and regulation. Trends in Food Science and Technology, 24(1), 30–46. https://doi.org/10.1016/j.tifs.2011.10.006

32. Gallocchio, F., Belluco, S., Ricci, A. (2015). Nanotechnology and food: Brief overview of the current scenario. Procedia Food Science, 5, 85–88. https://doi.org/10.1016/j.profoo.2015.09.022

33. More, S., Bampidis, V., Benford, D., Bragard, C., Halldorsson, T., Hernández-Jerez, A. (2021). Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Human and animal health. EFSA Journal, 19(8), Article e06768. https://doi.org/10.2903/j.efsa.2021.6768

34. Frewer, L. J., Gupta, N., George, S., Fischer, A. R. H., Giles, E. L., Coles, D. (2014). Consumer attitudes towards nanotechnologies applied to food production. Trends in Food Science and Technology, 40(2), 211–225. https://doi.org/10.1016/j.tifs.2014.06.005

35. Gupta, N., Fischer, A. R. H., George, S., Frewer, L. J. (2013). Expert views on societal responses to different applications of nanotechnology: a comparative analysis of experts in countries with different economic and regulatory environments. Journal of Nanoparticle Research, 15(8), Article 1838. https://doi.org/10.1007/s11051–013–1838–4

36. Lopez-Vazquez, E., Brunner, T. A., Siegrist, M. (2012). Perceived risks and benefits of nanotechnology applied to the food and packaging sector in Mexico. British Food Journal, 114(2), 197–205. https://doi.org/10.1108/00070701211202386

37. Hundleby, P. A. C., Harwood, W. A. (2019). Impacts of the EU GMO regulatory framework for plant genome editing. Food and Energy Security, 8(2), Article e00161. https://doi.org/10.1002/fes3.161

38. Carreño, I., Dolle, T. (2019). The Court of justice of the European Union’s Judgment on mutagenesis and international trade: A Case of GMO, mutagenesis and international trade. Global Trade and Customs Journal, 14(3), 91–101. https://doi.org/10.54648/gtcj2019010

39. Van Eenennaam, A.L., Young, A.E. (2018). Public Perception of Animal Biotechnology. Chapter in a book: Animal Biotechnology. Niemann, H., Wrenzycki, C. (Eds.), pp. 275–303. Springer, Cham. https://doi.org/10.1007/978-3-319-92348-2_13

40. Van Eenennaam, A. L., Young, A. E. (2018). Gene editing in livestock: promise, prospects and policy. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 13, Article 027. https://doi.org/10.1079/PAVSNNR201813027

41. Cui, K., Shoemaker, S. P. (2018). Public perception of genetically-modified (GM) food: A nationwide Chinese consumer study. npj Science of Food, 2(1), 3–12. https://doi.org/10.1038/s41538-018-0018-4

42. Deckers, M., Deforce, D., Fraiture, M.-A., Roosens, N. H. C. (2020). Genetically modified micro-organisms for industrial food enzyme production: An overview. Foods, 9(3), Article 326. https://doi.org/10.3390/foods9030326

43. Brookes, G., Barfoot, P. (2020). Environmental impacts of genetically modified (GM) Crop use 1996–2016: Impacts on pesticide use and carbon emissions. GM Crops & Food, 11(4), 215–241. https://doi.org/10.1080/21645698.2018.147679

44. Ghasemi, S., Ahmadvand, M., Karami, E., Karami, A. (2020). Social risk perceptions of genetically modified foods of engineers in training: Application of a comprehensive risk model. Science and Engineering Ethics, 26, 641–665. https://doi.org/10.1007/s11948-019-00110-6

45. Sunil, Chauhan, N., Singh, J., Chandra, S., Chaudhary, V., Kumar, V. (2018). Non-thermal techniques: Application in food industries. A review. Journal of Pharmacognosy and Phytochemistry, 7(5), 1507–1518.

46. Khouryieh, H. (2020). Novel and emerging technologies used by the U.S. food processing industry. Innovative Food Science and Emerging Technologies, 67, Article 102559. https://doi.org/10.1016/j.ifset.2020.102559

47. Zhang, Z.-H., Wang, L.-H., Zeng, X.-A., Han, Z., Brennan, C. S. (2018). Non-thermal technologies and its current and future application in the food industry: a review. International Journal of Food Science and Technology, 54(1), 1–13. https://doi.org/10.1111/ijfs.13903

48. Hite, B. H. (1899). The effect of high pressure in the preservation of milk. West Virginia Agricultural Experimental Station Bulletin, 58, 15–35.

49. Fam, S. N., Khosravi-Darani, K., Massoud, R., Massoud, A. (2021). High-pressure processing in food, Biointerface Research in Applied Chemistry, 11(4), 11553–11561. https://doi.org/10.33263/BRIAC114.1155311561

50. Agregán, R., Munekata, P. E. S., Zhang, W., Zhang, J., Pérez-Santaescolástica, C., Lorenzo, J. M. (2021). High-pressure processing in inactivation of Salmonella spp. in food products. Trends in Food Science and Technology, 107, 31–37. https://doi.org/10.1016/j.tifs.2020.11.025

51. Huang, H.-W., Hsu, C.-P., Wang, C.-Y. (2020). Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis, 28(1), 1–13. https://doi.org/10.1016/j.jfda.2019.10.002

52. Jolvis Pou, K. R. (2021). Applications of high pressure technology in food processing. International Journal of Food Studies, 10, 248–281. https://doi.org/10.7455/ijfs/10.1.2021.a10

53. Balakrishna, A.K., Abdul Wazed, M., Farid, M. (2020). A review on the effect of high pressure processing (HPP) on gelatinization and infusion of nutrients. Molecules, 25(10), Article 2369. https://doi.org/10.3390/molecules25102369

54. Khan, S., Keshavalu, Ghosh, S., Amaresh, Maurya, R. P., Badhautiya, S. et al. (2017). High pressure processing in food industry. Bulletin of Environment, Pharmacology and Life Sciences, 6(11), 28–31.

55. Tsevdou, M., Gogou, E., Taoukis, P. (2019). High hydrostatic pressure processing of foods. Chapter in a book: Green Food Processing Techniques: Preservation, Transformation and Extraction, 87–137. Academic Press, 2019. https://doi.org/10.1016/b978-0-12-815353-6.00004-5

56. Arshad, R. N., Abdul-Malek, Z., Munir, A., Buntat, Z., Ahmad, M. H., Jusoh, Y. M. M. et al. (2020). Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends in Food Science and Technology, 104, 1–13. https://doi.org/10.1016/j.tifs.2020.07.008

57. Niu, D., Zeng, X.-A., Ren, E.-F., Xu, F.-Y., Li, J., Wang, M.-S. et al. (2020). Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Research International, 137, Article 109715. https://doi.org/10.1016/j.foodres.2020.109715

58. Taha, A., Casanova, F., Šimonis, P., Stankevič, V., Gomaa, M.A.E., Stirkė, A. (2022). Pulsed electric field: Fundamentals and effects on the structural and techno-functional properties of dairy and plant proteins. Foods, 11, Article 1556. https://doi.org/10.3390/foods11111556

59. Zhang, S., Sun, L., Ju, H., Bao, Z., Zeng, X.-A., Lin, S. (2021). Research advances and application of pulsed electric field on proteins and peptides in food. Food Research International, 139, Article 109914. https://doi.org/10.1016/j.foodres.2020.109914

60. Zhang, Y., Wang, R., Wen, Q.-H., Rahaman, A., Zeng, X.-A. (2022). Effects of pulsed electric field pretreatment on mass transfer and quality of beef during marination process. Innovative Food Science and Emerging Technologies, 80, Article 103061. https://doi.org/10.1016/j.ifset.2022.103061

61. Guo, L., Azam, S. M. R., Guo, Y., Liu, D., Ma, H. (2021). Germicidal efficacy of the pulsed magnetic field against pathogens and spoilage microorganisms in food processing: An overview. Food Control, 136(1), Article 108496. https://doi.org/10.1016/j.foodcont.2021.108496

62. Hertwig, C., Meneses, N., Mathys, A. (2018). Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: A review. Trends in Food Science and Technology, 77, 131–142. https://doi.org/10.1016/j.tifs.2018.05.011

63. Report from the commission to the European parliament and the council on food and food ingredients treated with ionizing radiation for the year 2018–2019, European Commission, Brussels, 24.2.2021 COM (2021) 79 final. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0079 Accessed September 20, 2022.

64. Delorme, M. M., Guimarães, J. T., Coutinho, N. M., Balthazar, C. F., Rocha, R. S., Silva, R.et al. (2020). Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends in Food Science and Technology, 102, 146–154. https://doi.org/10.1016/j.tifs.2020.06.001

65. Josephson, E. S., Peterson, M. S. (Eds.). (1982). Preservation of food by ionizing radiation: Volume I (1st ed.). CRC Press. https://doi.org/10.1201/9781351076005

66. Sparrow, A. H., Christensen, E. (1950). Effects of X-ray, neutron and chronic gamma irradiation on growth and yield of potatoes. American Journal of Botany, 37, 667.

67. Nishihira, J. (2020). Safety of irradiated food. Chapter in book: Genetically Modified and Irradiated Food, V. Andersen (Ed.), Academic Press, Vienna. pp. 259–267. https://doi.org/10.1016/b978-0-12-817240-7.00016-4

68. Ravindran, R., Jaiswal, A. K. (2019). Wholesomeness and safety aspects of irradiated foods. Food Chemistry, 285, 363–368. https://doi.org/10.1016/j.foodchem.2019.02.002

69. D’Souza, C., Apaolaza, V., Hartmann, P., Brouwer, A. R., Nguyen, N. (2021). Consumer acceptance of irradiated food and information disclosure — A retail imperative. Journal of Retailing and Consumer Services, 63, Article 102699. https://doi.org/10.1016/j.jretconser.2021.102699

70. Bearth, A., Siegrist, M. (2019). “As long as it is not irradiated” — Influencing factors of US consumers’ acceptance of food irradiation. Food Quality and Preference, 71, 141–148. https://doi.org/10.1016/j.foodqual.2018.06.015

71. Zanardi, E., Caligiani, A., Novelli, E. (2017). New insights to detect irradiated food: An overview. Food Analytical Methods, 11(1), 224–235. https://doi.org/10.1007/s12161-017-0992-1

72. Galati, A., Moavero, P., Crescimanno, M. (2019). Consumer awareness and acceptance of irradiated foods: the case of Italian consumers. British Food Journal, 121(6), 1398–1412. https://doi.org/10.1108/bfj-05-2018-0336

73. Galati, A., Tulone, A., Moavero, P., Crescimanno, M. (2019). Consumer interest in information regarding novel food technologies in Italy: The case of irradiated foods. Food Research International, 119, 291–296. https://doi.org/10.1016/j.foodres.2019.01.065

74. Portanguen, S., Tournayre, P., Sicard, J., Astruc, T., Mirade, P.-S. (2019). Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science and Technology, 86, 188–198. https://doi.org/10.1016/j.tifs.2019.02.023

75. Dick, A., Bhandari, B., Prakash, S. (2019). 3-D printing of meat. Meat Science, 153, 35–44. https://doi.org/10.1016/j.meatsci.2019.03.005

76. Gorbunova, N.A. (2020). Possibilities of additive technologies in the meat industry. A review. Theory and Practice of Meat Processing, 5(1), 9–16. https://doi.org/10.21323/2414-438X-2020-5-1-9-16

77. Pereira, T., Barroso, S., Gil, M. M. (2021). Food texture design by 3D printing: A review. Foods, 10(2), Article 320. https://doi.org/10.3390/foods10020320

78. Ulrikh, E.V., Verkhoturov, V.V. (2022). Features of food design on a 3D printer. A review. Food Systems, 5(2), 100–106. https://doi.org/10.21323/2618–9771–2022–5–2–100–106 (In Russian)

79. Kornienko, V. Yu., Minaev, M. Yu. (2022). Trends in the development of 3d food printing. Food Systems, 5(1), 23–29. https://doi.org/10.21323/2618–9771–2022–5–1–23–29 (In Russian)

80. Nachal, N., Moses, J. A., Karthik, P., Anandharamakrishnan, C. (2019). Applications of 3D printing in food processing. Food Engineering Reviews, 11(3), 123–141. https://doi.org/10.1007/s12393–019–09199–8

81. Zhang, J., Li, Y., Cai, Y., Ahmad, I., Zhang, A., Ding, Y. et al. (2022). Hot extrusion 3D printing technologies based on starchy food: A review. Carbohydrate Polymers, 294, Article 119763. https://doi.org/10.1016/j.carbpol.2022.119763

82. Demei, K., Zhang, M., Phuhongsung, P., Mujumdar, A. S. (2022). 3D food printing: Controlling characteristics and improving technological effect during food processing. Food Research International, 156, Article 111120. https://doi.org/10.1016/j.foodres.2022.111120

83. Panghal, A., Vern, P., Mor, R. S., Panghal, D., Sindhu, S., Dahiya, S. (2022). A study on adoption enablers of 3D printing technology for sustainable food supply chain. Management of Environmental Quality. https://doi.org/10.1108/MEQ-03–2022–0056 (unpublished data)

84. Bedoya, M. G., Montoya, D.R., Tabilo-Munizaga, G., Pérez-Won, M., Lemus-Mondaca, R. (2022). Promising perspectives on novel protein food sources combining artificial intelligence and 3D food printing for food industry. Trends in Food Science and Technology, 128, 38–52. https://doi.org/10.1016/j.tifs.2022.05.013

85. Singh, H., Kour, R. (2022). Commercial market of food printing technologies. Chapter in a book: Food Printing: 3D Printing in Food Industry, Sandhu, K., Singh, S. (Eds). Springer, Singapore, pp. 155–176. https://doi.org/10.1007/978–981–16–8121–9_9

86. Mavri, M., Fronimaki, E., Kadrefi, A. (2021). Survey analysis for the adoption of 3D printing technology: consumers’ perspective. Journal of Science and Technology Policy Management. https://doi.org/10.1108/JSTPM-02–2020–0023 (unpublished data)

87. Teng, X., Zhang, M., Mujumdar, A. S. (2021). 4D printing: Recent advances and proposals in the food sector. Trends in Food Science and Technology, 110, 349–363. https://doi.org/10.1016/j.tifs.2021.01.076

88. Ghazal, A. F, Zhang, M., Mujumdar A. S., Ghamry, M. (2022). Progress in 4D/5D/6D printing of foods: applications and R&D opportunities. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2022.2045896 (unpublished data)

89. Cheng, Y., Fu, Y., Ma, L., Yap, P. L., Losic, D., Wang, H. et al. (2022). Rheology of edible food inks from 2D/3D/4D printing, and its role in future 5D/6D printing. Food Hydrocolloids, 32, Article 107855. https://doi.org/10.1016/j.foodhyd.2022.107855

90. Scheufele, D. A., Corley, E.A., Shih, T. -J., Dalrymple, K. E., Ho, S.S. (2009). Religious beliefs and public attitudes toward nanotechnology in Europe and the United States. Nature Nanotechnology, 4(2), 91–94. https://doi.org/10.1038/nnano.2008.361

91. Kriwy, P., Mecking, R.-A. (2012). Health and environmental consciousness, costs of behaviour and the purchase of organic food. International Journal of Consumer Studies, 36(1), 30–37. http://doi.org/10.1111/j.1470–6431.2011.01004.x

92. Hingley, M., Mikkola, M., Canavari, M., Asioli, D. (2012). Local and sustainable food supply: The role of European retail consumer cooperatives. International Journal on Food System Dynamics, 2(4), 340–347. http://doi.org/10.18461/ijfsd.v2i4.241

93. Harvey, D., Hubbard, C. (2013). Reconsidering the political economy of farm animal welfare: An anatomy of market failure. Food Policy, 38(1), 105–114. https://doi.org/10.1016/j.foodpol.2012.11.006


Review

For citations:


Smykov I.T. Neophobia: socio-ethical problems of innovative technologies of the food industry. Food systems. 2022;5(4):308-318. https://doi.org/10.21323/2618-9771-2022-5-4-308-318

Views: 1007


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)