Preview

Food systems

Advanced search

Functional characteristics and molecular structural modification of plant proteins. Review

https://doi.org/10.21323/2618-9771-2024-7-3-324-335

Abstract

Protein preparations from plant raw materials are widely used in the food industry as improvers, replacers or enrichers for products. However, their functional properties, as a rule, are less pronounced than those of proteins of animal origin. The aim of the review is to analyze and summarize the results of investigations dedicated to studying and characterizing the main functional properties of plant proteins (hydration, solubility, water binding capacity, fat binding capacity and gel-forming capacity, stability of emulsions, foams, rheological properties, texturization) and their modification. The objects of the research were scientific publications, most of which were published in 2017–2024. Functional properties of proteins were characterized; their dependence on the nature and variety of crop, methods of extraction, technological factors of processing and methods of modification was revealed. The search and selection of papers were carried out in the bibliographic databases eLIBRARY.RU, RSCI, Google Scholar, Scopus, Web of Science, Elsevier, and PubMed. Data analysis was performed with their systematization, generalization, intermediate conclusions and general conclusion. The special attention was paid to chemical, physical, physico-chemical and enzymatic methods for modification of protein properties, their advantages and disadvantages, as well as the interrelation of structural and physico-chemical features of proteins with their functional properties. The main regularities were revealed for an effect of modification methods on the secondary and tertiary structures of proteins, surface hydrophobicity, the ratio from fractions, aggregation, denaturation and biological activity obtained by the modern methods of investigations (IR‑spectroscopy, fluorescent microscopy, SDS-PAGE, circular dichroism, spectrophotometry and so on). It has been concluded that it is necessary to carry out further investigations aimed to studying interrelation of molecular structural features of proteins with indicators of functionality and regularities of their behavior in food systems due to an increase in the production of protein preparations from alternative raw materials (pea, chickpea, sunflower, kidney bean, rice and others). Based on the revealed and newly obtained theoretical information, the targeted modification and regulation of properties of protein ingredients for production of high-quality foods are possible.

About the Authors

V. V. Kolpakova
All-Russian Research Institute of Starch and Starch — containing Raw Materials Processing — Branch of Russian Potato Research Centre
Russian Federation

Valentina V. Kolpakova  - Doctor of Technical Sciences, Professor, Chief Researcher, Head of the Department of Biotechnology for the Complex Processing of Starch-Containing Raw Materials

11, Nekrasov Str., 140051, Kraskovo, Lyubertsy, Moscow region

Tel.: + 7–915–285–84–50



V. A. Byzov
All-Russian Research Institute of Starch and Starch — containing Raw Materials Processing — Branch of Russian Potato Research Centre
Russian Federation

Vasily A Byzov - Candidate of Agricultural Sciences, Director

11, Nekrasov Str., 140051, Kraskovo, Lyubertsy, Moscow region

Tel.: + 7–915–285–84–50



References

1. Martinchik, A. N., Maev, I. V., Yanushevich, O. O. (1985). General nutrition. Moscow: MEDpress-inform, 2005. (In Russian)

2. Nechaev, A. P., Kochetkova, A. A., Kolpakova, V. V., Traubenberg, S. E., Vitol, I. S., Kobeleva, I. B. et al. (2024). Food chemistry. St. Petersburg: GIORD, 2024. (In Russian)

3. Tolstoguzov V. B. (1987). New forms of protein food. Moscow: Agropromizdat, 1987. (In Russian)

4. Kolpakova, V. V., Chumikina, L. V., Arabova, L. I., Lukin, D. N, Topunov, А. F, Тitov, Е. I. (2016). Functional technological properties and electrophoretic composition of modified wheat gluten. Foods and Raw Materials, 4(2), 48–57. https://doi.org/10.21179/2308-4057-2016-2-48-57

5. Moll, P., Grossmann, L., Kutzli, I., Weiss, J. (2019). Influence of energy density and viscosity on foam stability — A study with pea protein (Pisum Sativum L.). Journal of Dispersion Science and Technology, 41(12), 1789–1796. https://doi.org/10.1080/01932691.2019.1635028

6. Jakobson, K., Kaleda, A., Adra, K., Tammik, M. L., Vaikma, H., Kriščiunaite, T. et al. (2023). Techno-functional and sensory characterization of commercial plant protein powders. Foods, 12(14), Article 2895. https://doi.org/10.3390/foods12142805

7. Onder, S., Karaca, A. C., Ozcelik, B., Alamri, A. S., Ibrahim, S. A., Galanakis, C. M. (2023). Exploring the amino-acid composition, secondary structure, and physicochemical and functional properties of chickpea protein isolates. ACS Omega, 8(1), 1486–1495. https://doi.org/10.1021/acsomega.2c06912

8. Ma, W., Qi, B., Sami, R., Jiang, L., Li, Y., Wang, H. (2018). Conformational and functional properties of soybean proteins produced by extrusion-hydrolysis approach. International Journal of Analitical Chemistry, 1–11. https://doi.org/10.1155/2018/9182508

9. Martinez-Velasco, A., Lobato-Calleros, C., Hernandez-Rodriguez, B. E., RomanGuerrero, A., Alvarez-Ramirez, J., Vernon-Carter, E. J. High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrasonics — Sonochemistry, 44, 97–105. https://doi.org/10.1016/j.ultsonch.2018.02.007

10. Tontul, İ., Kasimoglu, Z., Asik, S., Atbakan, T., Topuz, A. (2017). Functional properties of chickpea protein isolates dried by refractance window drying. International Journal of Biological Macromolecules, 109, 1253–1259. https://doi.org/10.1016/j.ijbiomac.2017.11.135

11. Kolpakova, V., Gaivoronskaya I., Gulakova V., Sarjveladze А. (July 2–8, 2018). Composition on the basis of plantbased proteins with the use of transgutaminase. 18 International Multidisciplinary Scientific GeoConference SGEM. Albena, Bulgaria, 2018. https://doi.org/10.5593/sgem2018/6.2

12. Yan, J., Zhao, S., Xu, X., Liu, F. (2023). Enhancing pea protein isolate functionality: A comparative study of high-pressure homogenization, ultrasonic treatment, and combined processing techniques. Current Research in Nutrition and Food Science, 8, Article 100653. https://doi.org/10.1016/j.crfs.2023.1006512

13. Shevkani, K., Singh, N., Chen, Y., Kaur, A., Yu, L. (2019). Pulse proteins: Secondary structure, functionality and applications. Journal of Food Science and Technology, 56(6), 2787–2798. https://doi.org/10.1007/s13197-019-03723-8

14. Shevkani, K., Singh, N., Kaur, A., Rana, J. C. (2015). Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study. Food Hydrocolloids, 43, 679–689. https://doi.org/10.1016/j.foodhyd.2014.07.024

15. Karaca, A. C., Low, N., Nickerson, M. (2011). Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Research International, 44(9), 2742–2750. https://doi.org/10.1016/j.foodres.2011.06.012

16. Kolpakova, V. V., Fan, Q. Ch., Gaivoronskaya, I. S., Chumikina, L. V. (2023). Properties and structural features of native and modified proteins of concentrates from white and brown rice. Food Systems, 6(3), 317–328. (In Russian)] https://doi.org/10.21323/2618-9771-2023-6-3-317-328

17. Flory, J., Alavi, S. (2024). Use of hydration properties of proteins to understand their functionality and tailor texture of extruded plant-based meat analogues. Journal of Food Science, 89(1), 245–258. https://doi.org/10.1111/1750-3841.16804

18. Kolpakova, V. V., Studennikova, O. Yu. (2009). Hydration capacity and physico-chemical properties of wheat gluten proteins. Izvestiya Vuzov. Food Technology, 2–3 (308–309), 5–8. (In Russian)

19. Vanin, S. V., Kolpakova, V. V. (2007). Functional properties of dry wheat gluten of different quality. Izvestiya Vuzov. Food Technology, 1(296), 21–24. (In Russian)

20. Kolpakova, V. V., Zaytseva, L. V., Martynova, I. V., Osipov Ye. A. (2007). Protein from wheaten bran: Increase of output and functional properties. Storage and Processing of Farm Products, 2, 23–25. (In Russian)

21. Kolpakova, V. V., Chumikina, L. V., Arabova, L. I. (2019). Modification of functional properties of white and brown rice protein concentrates. Proceedings of the Voronezh State University of Engineering Technologies, 81(1), 181–189. (In Russian)] https://doi.org/10.20914/2310-1202-2019-1-181-189

22. Kolpakova, V. V., Kulikov, D. S., Gulakova, V. A., Ulanova, R. V. (2023). Obtaining protein preparations by complex modification of potato juice. Food Industry, 9, 74–79. (In Russian) https://doi.org/10.52653/PPI.2023.9.9.013

23. O′Flynn, T. D., Hogan, S. A., Daly, D. F. M., O′Mahony, J. A., McCarthy, N. A. (2021). Rheological and solubility properties of soy protein isolate. Molecules, 26(10), Article 3015. https://doi.org/10.3390/molecules26103015

24. Lei, D., Li, J., Zhang, C., Li, S., Zhu, Z., Wang, F. et al. (2022). Complexation of soybean protein isolate with β-glucan and myricetin: Different affinity on 7S and 11S globulin by QCM-D and molecular simulation analysis. Food Chemistry: X, 15, Article 100426. https://doi.org/10.1016/j.fochx.2022.100426

25. Kolpakova, V. V., Lukin, N. D., Gaivoronskaya, I. S. (2018). Interrelation of functional properties of protein products from wheat with the composition and physicochemical characteristics of their proteins. Chapter in a book: Global Wheat Production. London: IntechOpen, 2018. http://doi.org/10.5772/intechopen.75803

26. Kolpakova, V. V., Ulanova, R. V., Kulikov, D. S., Gulakova, V. A., Semenov, G. V., Shevyakova, L. V. (2022). Pea and chickpea protein concentrates: Quality indicators. Food Processing: Techniques and Technology, 52(4), 650–664. (In Russian)] http://doi.org/10.21603/2074-9414-2022-4-2394

27. Rashwan, A. K., Osman, A. I., Abdelshafy, A. M., Mo, J., Chen, W. (2023). Plantbased proteins: Advanced extraction technologies, interactions, physicochemical and functional properties, food and related applications, and health benefits. Critical Reviews in Food Science and Nutrition, 1–28. http://doi.org/10.1080/10408398.2023.2279696

28. Huang, L., Ding, X., Dai, C., Ma, H. (2017). Changes in the structure and dissociation of soybean protein isolate induced by ultrasound-assisted acid pretreatment. Food Chemistry, 232, 727–732. https://doi.org/10.1016/j.foodchem.2017.04.077

29. Lu, Z. X., He, J. F., Zhang, Y. C., Bing, D. J. (2020). Composition, physicochemical properties of pea protein and its application in functional foods. Critical Reviews in Food Science and Nutrition, 60(15), 2593–2605. https://doi.org/10.1080/10408398.2019.1651248

30. Singhal, A., Karaca. A. C., Tyler, R., Nickerson, M. (2016). Pulse Proteins: From processing to structure-function relationships. Chapter in a book: Grain Legumes. London: IntechOpen, 2016. https://doi.org/10.5772/64020

31. Stone, A. K., Karalash, A., Tyler, R. T., Warkentin, T. D., Nickerson, M. T. (2015). Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Research International, 76, 31–38. https://doi.org/10.1016/j.foodres.2014.11.017

32. Gültekin Subaşı, B., Vahapoğlu, B., Capanoglu, E., Mohammadifar, M. A. (2022). A review on protein extracts from sunflower cake: Techno-functional properties and promising modification methods. Critical Reviews in Food Science and Nutrition, 62(24), 6682–6697. https://doi.org/10.1080/10408398.2021.1904821

33. Le Priol, L., Dagmey, A., Morandat, S., Saleh, K., El Kirat, K., Nesterenko, A. (2019). Comparative study of plant protein extracts aswall materials for the improvement of the oxidative stability of sunflower oil by microencapsulation. Food Hydrocolloids, 95(2), 105–115. https://doi.org/10.1016/j.foodhyd.2019.04.026

34. Albe Slabi, S., Mathe, C., Basselin, M., Framboisier, X., Ndiaye, M., Galet, O. et al. (2020). Multi-objective optimization of solid/liquid extraction of total sunflower proteins from cold press meal. Food Chemistry, 317, Article 126423. https://doi.org/10.1016/j.foodchem.2020.126423

35. Malik, M. A., Saini, C. S. (2017). Polyphenol removal from sunflower seed and kernel: Effect on functional and rheological properties of protein isolates. Food Hydrocolloids, 63, 705–715. https://doi.org/10.1016/j.foodhyd.2016.10.026

36. Alexandrino, T. D., Ferrari, R. A., de Oliveira, L. M., de Cássia, S. C. Ormenese, R., Pacheco, M. T. B. (2017). Fractioning of the sunflower flour components: Physical, chemical and nutritional evaluation of the fractions. LWT, 84, 426–432. https://doi.org/10.1016/j.lwt.2017.05.062

37. Shen, Y., Tang, X., Li, Y. (2021). Drying methods affect physicochemical and functional properties of quinoa protein isolate. Food Chemistry, 339, Article 127823. https://doi.org/10.1016/j.foodchem.2020.127823

38. Osen, R., Toelstede, S., Wild, F., Eisner, P., Schweiggert-Weisz, U. (2014). High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. Journal of Food Engineering, 127, 67–74. https://doi.org/10.1016/j.jfoodeng.2013.11.023

39. Pietrysiak, E., Smith, D. M., Smith, B. M., Ganjyal, G. M. (2018). Enhanced functionality of pea-rice protein isolate blends through direct steam injection processing. Food Chemistry, 243, 338–344. https://doi.org/10.1016/j.foodchem.2017.09.132

40. Ma, K. К., Greis, M., Lu, J., Nolden, A. A., McClements, D. I., Kinchla, A. J. (2022). Functional performance of plant proteins. Foods, 11(4), Article 594. https://doi.org/10.3390/foods11040594

41. Lafarga, T., Álvarez, C., Villaró, S., Bobo, G., Aguiló-Aguayo, I. (2019). Potential of pulse-derived proteins for developing novel vegan edible foams and emulsions. International Journal of Food Science and Technology, 55(2), 475–481. https://doi.org/10.1111/ijfs.14286

42. Gundogan, R., Can Karaca, A. (2020). Physicochemical and functional properties of proteins isolated from local beans of Turkey. LWT, 130, Article 109609. https://doi.org/10.1016/j.lwt.2020.109609

43. Keskin, S. O., Ali, T. M., Ahmed, J., Shaikh, M., Siddiq, M., Uebersax, M. A. (2021). Physico-chemical and functional properties of legume protein, starch, and dietary fiber–A review. Legume Science, 4(1), Article e117. https://doi.org/10.1002/leg3.117

44. Pasupuleti, V. K., Braun, S. (2010). State of the art manufacturing of protein hydrolysates. Chapter in a book: Protein Hydrolysates in Biotechnology. Springer Dordrecht, 2010. https://doi.org/10.1007/978-1-4020-6674-0_2

45. Jeong, M.-S., Cho, S.-J. (2024). Effect of pH-shifting on the water holding capacity and gelation properties of mung bean protein isolate. Food Research International, 177, Article, 113912. https://doi.org/10.1016/j.foodres.2023.113912

46. Ramani, A., Kushwaha, R., Malaviya, R., Kumar, R., Yadav, N. (2021). Molecular, functional and nutritional properties of chickpea (Cicer arietinum L.) protein isolates prepared by modified solubilization methods. Journal of Food Measurement and Characterization, 15(3), 2352–2368. https://doi.org/10.1007/s11694-020-00778-6

47. Brayden, M., L. Xu, G., Barbay, G., Koros, W. (March 26–30, 2017). Impact of impurities on carbon molecular sieve membranes for applications in olefins units. Spring Meeting and 13th Global Congress on Process Safety. Henry Gonzalez Convention Center, San Antonio, 2017.

48. Adebiyi, A. P., Aluko, R. E. (2011). Functional properties of protein fractions obtained from commercial yellow field pea (Pisum sativum L.) seed protein isolate. Food Chemistry, 128(4), 902–908. https://doi.org/10.1016/j.foodchem.2011.03.116

49. Vélez-Erazo, E. M., Silva, I. L., Comunian, T., Kurozawa, L. E., Hubinger, M. D. (2021). Effect of chia oil and pea protein content on stability of emulsions obtained by ultrasound and powder production by spray drying. Journal of Food Science and Technology, 58(10), 3765–3779. https://doi.org/10.1007/s13197-020-04834-3

50. Houde, M., Khodaei, N., Benkerroum, N., Karboune, S. (2018). Barley protein concentrates: Extraction, structural and functional properties. Food Chemistry, 254, 367–376. https://doi.org/10.1016/j.foodchem.2018.01.156

51. Olagunju, A. I., Omoba, O. S., Enujiugha, V. N., Alashi, A. M., Aluko, R. E. (2018). Antioxidant properties, ACE/renin inhibitory activities of pigeon pea hydrolysates and effects on systolic blood pressure of spontaneously hypertensive rats. Food Science and Nutrition, 6(7), 1879–1889. https://doi.org/10.1002/fsn3.740

52. Lam, A. C. Y., Can Karaca, A., Tyler, R. T., Nickerson, M. T. (2018). Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34(2), 126–147. https://doi.org/10.1080/87559129.2016.1242135

53. Lobanov, V. G., Slepokurova, Y. I., Zharkova, I. M., Koleva, T. N., Roslyakov, Y. F., Krasteva, A. P. (2018). Economic effect of innovative flour-based functional foods production. Foods and Raw Materials, 6(2), 474–482. https://doi.org/10.21603/2308-4057-2018-2-474-482

54. Akter, D., Begum, R., Rahman, Md. N., Talukder, N., Alam, J. (2020). Optimization of extraction process parameter for rice bran protein concentrate and its utilization in high protein biscuit formulation. Current Research in Nutrition and Food Science, 8(2), 596–608. https://doi.org/10.12944/CRNFSJ.8.2.25

55. Higa, F., House, J. D., Nickerson, M. T. (2023). Functionality and nutritional properties of yellow pea, green lentil, chickpea, and navy bean proteins extracted by different methods. European Food Research and Technology, 250(1), 273–286. https://doi.org/10.1007/s00217-023-04385-9

56. Bajaj, P. R., Bhunia, K., Kleiner, L., Joyner (Melito), H. S., Smith, D., Ganjyal, G. et al. (2017). Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil. Journal of Microencapsulation, 34(2), 218–230. https://doi.org/10.1080/02652048.2017.1317045

57. Mession, J.-L., Chihi, M. L., Sok N., Saurel, R. (2015). Effect of globular pea proteins fractionation on their heat-induced aggregation and acid cold-set gelation. Food Hydrocolloids, 46, 233–243. https://doi.org/10.1016/j.foodhyd.2014.11.025

58. Sun, X. D., Arntfield, S. D. (2011). Gelation properties of salt-extracted pea protein isolate induced by heat treatment: Effect of heating and cooling rate. Food Chemistry, 124(3), 1011–1016. https://doi.org/10.1016/j.foodchem.2010.07.063

59. Moreno, H. M., Domínguez-Timón, F., Díaz, M. T., Pedrosa, M. M., Borderías, A. J., Tovar, C. A. (2020). Evaluation of gels made with different commercial pea protein isolate: Rheological, structural and functional properties. Food Hydrocolloids, 99(4), Article 105375. https://doi.org/10.1016/j.foodhyd.2019.105375

60. Knopfe, C., Shwenke, K. D., Mothes, R., Mikheeva, L. M., Grinberg, V., Görnitz, E. et al. (1998). Acetilation and succinylated of faba bean legumin: Modification of hydrophobicity and conformation. Food/Nahrung, 42(03–04), 194–196.

61. Shih, F. F., Hamada, J. S., Marshall, W. E. (1999). Deamidation and phosphorylation to improve protein functionality in foods. Chapter in a book: Molecular aapproaches to improving food quality and safety. Springer New York, NY, 1999. https://doi.org/10.1007/978-1-4684-8070-2_2

62. Fang, L., Xiang, H., Sun-Waterhouse, D., Cui, C., Lin, J. (2020). Enhancing the usability of pea protein isolate in food applications through modifying its structural and sensory properties via deamidation by glutaminase. Journal of Agricultural and Food Chemistry, 68 (6), 1691–1697. https://doi.org/10.1021/acs.jafc.9b06046

63. Gallart-Palau, X., Serra A., Sze, S. K. (2015). Uncovering neurodegenerative protein modifications via proteomic profiling. Chapter in a book: International Review of Neurobiology. Academic Press, 2015. https://doi.org/10.1016/bs.irn.2015.06.002

64. Schwenke, K. D., Mothes, R., Dudek, S., Görnitz, E. (2000). Phosphorylation of the 12S globulin from rapeseed (Brassica napus L.) by phosphorous oxychloride: Chemical and conformational aspects. Journal of Agricultural and Food Chemistry, 48(3), 708–715. https://doi.org/10.1021/jf9907900

65. Liu, Y., Wang, D., Wang, J., Yang, Y., Zhang, L., Li, J., et al. (2019). Functional properties and structural characteristics of phosphorylated pea protein isolate. International Journal of Food Science and Technology. https://doi.org/10.1111/ijfs.14391

66. Nikbakht Nasrabadi, M., Sedaghat Doost, A., Mezzenga, R. (2021). Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocolloids, 118, Article 106789. https://doi.org/10.1016/j.foodhyd.2021.106789

67. Ma, W., Wang, T., Wang, J., Wu, D., Wu, C., Du, M. (2020). Enhancing the thermal stability of soy proteins by preheat treatment at lower protein concentration. Food chemistry, 306, Article 125593. https://doi.org/10.1016/j.foodchem.2019.125593

68. Zhao, M., Xiong, W., Chen, B., Zhu, J., Wang, L. (2020). Enhancing the solubility and foam ability of rice glutelin by heat treatment at pH12: Insight into protein structure. Food Hydrocolloids, 103. Article 105626. https://doi.org/10.1016/j.foodhyd.2019.105626

69. Mir, N. A., Riar, C. S., Singh, S. (2020). Сtructural modification in album (Chenopodium album) protein isolates due to controlled thermal modification and its relationship with protein digestibility and its relationship with protein digestibility and functionality. Food Hydrocolloids, 103, Article 105708. https://doi.org/10.1016/j.foodhyd.2020.105708

70. Bühler, J. M., Dekkers, B. L., Bruins, M. E., van der Goot, A. J. (2020). Modifying faba bean protein concentrate using dry heat to increase water holding capacity. Foods, 9(8), Article 1077. https://doi.org/10.3390/foods9081077

71. Ling, B., Cheng, T., Wang, S. (2019). Recent developments in applications of radio frequency heating for improving safety and quality of food grains and their products: A review. Critical Reviews in Food Science and Nutrition, 60(15), 2622– 2642. https://doi.org/10.1080/10408398.2019.1651690

72. Guo, C., Wang, X., Wang, Y. (2018). Dielectric properties of soy protein isolate dispersion and its temperature profile during radio frequency heating. Journal of Food Processing and Preservation, 42(7), Article e13659. https://doi.org/10.1111/jfpp.13659

73. Ling, B., Ouyang, S., Wang, S. (2019). Effect of radio frequency treatment on functional, structural and thermal behaviors of protein isolates in rice bran. Food Chemistry, 289, 537–544. https://doi.org/10.1016/j.foodchem.2019.03.072

74. Hassan, A. B., von Hoersten, D., Mohamed Ahmed, I. A. (2019). Effect of radio frequency heat treatment on protein profile and functional properties of maize grain. Food Chemistry, 271, 142–147. https://doi.org/10.1016/j.foodchem.2018.07.190

75. Moll, P., Salminen, H., Schmitt, C., Weiss, J. (2021). Impact of microfluidization on colloidal properties of insoluble pea protein fractions. European Food Research and Technology, 247(3), 545–554. https://doi.org/10.1007/s00217-020-03629-2

76. Vall-llosera, M., Jessen, F., Henriet, P., Marie, R., Jahromi, M., Sloth, J. J. (2021). Physical stability and interfacial properties of oil in water emulsion stabilized with pea protein and fish skin gelatin. Food Biophysics, 16(1), 139–151. https://doi.org/10.1007/s11483-020-09655-7

77. Asif, M. N., Imran, M., Ahmad, M. H., Khan M. K., Hailu, G. G. (2024). Physicochemical and functional properties of Moringa seed potein treated with ultrasound. ACS Omega, 9(3), 4102–4110. https://doi.org/10.1021/acsomega.3c09323

78. Yao, G., Guo, Y., Cheng, T., Wang, Z., Li, B., Xia, C. et al. (2022). Effect of γ-irradiation on the physicochemical and functional properties of rice protein. Food Science and Technology (Campinas), 42(1), Article e12422. http://dx.doi.org/10.1590/fst.12422

79. Helmick, H., Rodriguez, N., Kokini, J. L. (2023). Utilization of creep ringing and bioinformatic modelling in study of cold denatured pea protein emulsions. Innovative Food Science and Emerging Technologies, 88, Article 103420. https://doi.org/10.1016/j.ifset.2023.103420

80. Zhang, Z., Zhang, L., He, S., Li, X., Jin, R., Liu, Q. et al. (2023). High-moisture extrusion technology application in the processing of textured plant protein meat analogues: A review. Food Reviews International, 39(8), 4873–4908. http://doi.org/10.1080/87559129.2021.2024223

81. Meng, X.-Y., Zhu, X.-Q., An, H.-Z., Yang, J.-F., Dai, H.-H. (2023). Study on the relationship between raw material characteristics of soybean protein concentrate and textured vegetable protein quality. Food Science Technology (Campinas), 43(2), Article e121822. https://doi.org/10.1590/fst.121822

82. Kyriakopoulou, K., Dekkers, B., van der Goot, A. J. (2019). Plant-based meat analogues. Chapter in a book: Sustainable Meat Production and Processing, Cambridge: Academic Press, 2019. http://dx.doi.org/10.1016/B978-0-12-814874-7.00006-7

83. Liu, Y., Huang, Z.-H., Hu, Z.-X., Yu, Z., An, H.-Z. (2022). Texture and rehydration properties of texturised soy protein: analysis based on soybean 7S and 11S proteins. International Journal of Food Science and Technology, 58(1), 323–333. https://doi.org/10.1111/ijfs.15787

84. Samard, S., Ryu, G.-H. (2019). Physicochemical and functional characteristics of plant protein-based meat analogs. Journal of Food Processing and Preservation, 43(2), Article 14123. https://doi.org/10.1111/jfpp.14123

85. Semenova, M. (2017). Protein-polysaccharide associative interactions in the design of tailor-made colloidal particles. Current Opinion in Colloid and Interface Science, 28, 15–21. https://doi.org/10.1016/j.cocis.2016.12.003

86. Liu, S., Low, N. H., Nickerson, M. T. (2009). Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolate-gum Arabic complexes. Journal of Agricultural and Food Chemistry, 57(4), 1521–1506. https://doi.org/10.1021/jf802643n

87. Klemmer, K. J., Waldner, L., Stone, A., Low, N. H., Nickerson, M. T. T. (2012). Complex coacervation of pea protein isolate and alginate polysaccharides. Food Chemistry, 130(3), 710–715. https://doi.org/10.1016/j.foodchem.2011.07.114

88. Lan, Y., Chen, B., Rao, J. (2018). Pea protein isolate–high methoxyl pectin soluble complexes for improving pea protein functionality: Effect of pH, biopolymer ratio and concentrations. Food Hydrocolloids, 80, 245–253. https://doi.org/10.1016/j.foodhyd.2018.02.021

89. Yekta, R., Assadpour, E., Hosseini, H., Jafari, S. M. (2023). The influence of ionic polysaccharides on the physicochemical and techno-functional properties of soy proteins; a comprehensive review. Carbohydrate Polymers, 319, Article 21191. https://doi.org/10.1016/j.carbpol.2023.121191

90. Silva, F. G., Passerini, A. B. S., Ozorio, L., Picone, C. S. F., Perrechil, F. A. (2024). Interactions between pea protein and gellan gum for the development of plantbased structures. International Journal of Biological Macromolecules, 255, Article 128113. https://doi.org/10.1016/j.ijbiomac.2023.128113

91. Lopes-da-Silva, J. A., Monteiro, S. R. (2019). Gelling and emulsifying properties of soy protein hydrolysates in the presence of a neutral polysaccharide. Food Chemistry, 294, 216–223. https://doi.org/10.1016/j.foodchem.2019.05.039

92. Beniwal, A. S., Singh, J., Kaur, L., Hardacre, A., Singh, H. (2021). Meat analogs: Protein restructuring during thermomechanical processing. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1221–1249. https://doi.org/10.1111/1541-4337.12721

93. Florowska, A., Hilal, A., Florowski, T., Wroniak, M. (2020). Addition of selected plant-derived proteins as modifiers of inulin hydrogels properties. Foods, 9(7), Article 845. https://doi.org/10.3390/foods9070845

94. Salles, J., Gueugneau, M., Patrac, V., Malnero-Fernandez, C., Guillet, C., Le Bacquer, O. et al. (2023). Associating inulin with a pea protein improves fast-twitch skeletal muscle mass and muscle mitochondrial activities in old rats. Nutrients, 15(17), Article 3766. https://doi.org/10.3390/nu15173766

95. Maumela, P., van Rensbur., E., Chimphango, A. F. A., Görgens, J. F. (2020). Sequential extraction of protein and inulin from the tubers of Jerusalem artichoke (Helianthus tuberosus L.). Journal of Food Science and Technology, 57(2), 775–786. https://doi.org/10.1007/s13197-019-04110-z

96. Strasser, R. (2016). Plant protein glycosylation. Glycobiology, 26(9), 926–939. https://doi.org/10.1093/glycob/cww023

97. Zhao, C., Yin, H., Yan, J., Qi, B., Liu, J. (2020). Structural and physicochemical properties of soya bean protein isolate/maltodextrin mixture and glycosylation conjugates. International Journal of Food Science and Technology, 55(10), 3315– 3326. https://doi.org/10.1111/ijfs.14595

98. Abe, R., Matsukaze, N., Kobayashi, H., Yamaguchi, Y., Uto-Kondo, H., Kumagai, H. et al. (2020). Allergenicity of deamidated and/or peptide-bond-hydrolyzed wheat gliadin by transdermal administration. Foods, 9(5), Article 635. https://doi.org/10.3390/foods9050635

99. Klost, M., Drusch, S. (2019). Functionalisation of pea protein by tryptic hydrolysis — characterisation of interfacial and functional properties. Food Hydrocolloids, 86(1), 134–140. https://doi.org/10.1016/j.foodhyd.2018.03.013

100. Brückner-Gühmann, M., Heiden-Hecht, T., Sözer, N., Drusch, S. (2018). Foaming characteristics of oat protein and modification by partial hydrolysis. European Food Research and Technology, 244(12), 2095–2106. https://doi.org/10.1007/s00217-018-3118-0

101. Tamm, F., Herbst, S., Brodkorb, A., Drusch S. (2016). Functional properties of pea protein hydrolysates in emulsions and spray-dried microcapsules. Food Hydrocolloids, 58, 204–214. https://doi.org/10.1016/j.foodhyd.2016.02.032

102. García Arteaga, V., Apéstegui Guardia, M., Muranyi, I., Eisner, P., SchweiggertWeisz, U. (2020). Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates. Innovative Food Science and Emerging Technologies, 65, Article 102449. https://doi.org/10.1016/j.ifset.2020.102449

103. Eckert, E., Han, J., Swallow, K., Tian, Z., Jarpa-Parra, M., Chen, L. (2019). Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of faba bean protein. Cereal Chemistry, 96(4), 725–741. https://doi. org/10.1002/cche.10169

104. Barać, M., Čabrilo, S., Pešić, M., Stanojević, S., Pavlićević, M., Maćej, O. et al. (2011). Functional properties of pea (Pisum sativum, L.) protein isolates modified with chymosin. International Journal of Molecular Sciences, 12(12), 8372– 8387. https://doi.org/10.3390/ijms12128372

105. Lozovsky, I. V. Orlova, T. V. (June 13–15, 2022). Modification of functional properties of pea (Pisum sativum l.) proteins. Proceedings of the 4th International scientific-practical conference “Problems and prospects of scientific innovative provision of the agro-industrial complex of regions”. Kursk, 2022. (In Russian)

106. Cruz-Chamorro, I., Santos-Sánchez, G., Álvarez-López, A. I., Pedroche, J., Lardone, P. J., Arnoldi, A. et al. (2023). Pleiotropic biological effects of Lupinus spp. protein hydrolysates. Trends in Food Science and Technology. 133, 244–266 https://doi.org/10.1016/j.tifs.2023.02.011

107. Esfandi, R., Willmore, W. G., Tsopmo, A. (2019). Peptidomic analysis of hydrolyzed oat bran proteins and their in vitro antioxidant and metal chelating properties. Food Chemistry, 279, 49–57. https://doi.org/10.1016/j.foodchem.2018.11.110

108. Chen, L., Chen, J., Yu, L., Wu, K., Zhao, M. (2018). Emulsification performance and interfacial properties of enzymically hydrolyzed peanut protein isolate pretreated by extrusion cooking. Food Hydrocolloids, 77, 607–616. https://doi.org/10.1016/j.foodhyd.2017.11.002

109. Schlegel, K., Leidigkeit, A., Eisner, P., Schweiggert–Weisz, U. (2019). Technofunctional and sensory properties of fermented lupin protein isolates. Foods, 8(12), Article 678. https://doi.org/10.3390/foods8120678

110. Балабан, Н. П., Шарипова, М. Р. (2011). Практическое применение бациллярных протеаз. Ученые записки Казанского университета. Серия Естественные науки. 153(2), 29–40. [Balaban, N. P., Sharipova, M. R. (2011). Practical application of bacilli proteases. Proceedings of Kazan University. Natural Sciences Series, 153(2), 29–40. (In Russian)]

111. Kolpakova, V. V., Chumikina, L. V., Vasiliev, A. V., Arabova, L. I., Topunov, A. F. (2011). A special effect of endo- and exoproteinase enzyme preparations on wheat gluten proteins. Biotekhnologiya, 3, 63–73. (In Russian)

112. Felix, M., Cermeño, M., FitzGerald, R. J. (2020). Influence оf hydrolysis оn the bioactive properties and stability of chickpea–protein–based o/w emulsions. Journal of Agricultural and Food Chemistry, 68(37), 10118–10127. https://doi.org/10.1021/acs.jafc.0c02427

113. Liu, X., Wang, C., Zhang, X., Zhang, G., Zhou, J., Chen, J. (2022). Application prospect of protein-glutaminase in the development of plant-based protein. Foods, 11(3), Article 440. https://doi.org/10.3390/foods11030440

114. Zheng, N., Long, M., Zhang, Z., Zan. Q., Osire, T., Zhou, H. et al. (2022). Proteinglutaminase engineering based on isothermal compressibility perturbation for enhanced modification of soy protein usolate. Journal of Agricultural and Food Chemistry, 70(43), 13969–13978. https://doi.org/10.1021/acs.jafc.2c06063

115. Qu, R., Zhu, X., Tian, M., Liu, Y., Yan, W., Ye, J. et al. (2018). Complete genome sequence and characterization of a protein–glutaminase producing strain, Chryseobacterium proteolyticum QSH1265. Frontiers in Microbiology, 9, Article 1975. https://doi.org/10.3389/fmicb.2018.01975

116. Amobonye, A., Singh, S., Pillai, S. (2019). Recent advances in microbial glutaminase production and applications–a concise review. Critical Reviews in Biotechnology, 39(7), 944–963. https://doi.org/10.1080/07388551.2019.1640659

117. Kumagai, H., Urade, R. (2019). Deamidation of gluten proteins as a tool for improving the properties of bread. Chapter in a book: Flour and breads and their fortification in health and disease prevention. Academic Press, 2019. https://doi.org/10.1016/B978-0-12-814639-2.00001-0

118. Chen, X., Fu, W., Luo, Y., Cui, C., Suppavorasatit, I., Liang, L. (2021). Protein deamidation to produce processable ingredients and engineered colloids for emerging food applications. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3788–3817. https://doi.org/10.1111/1541-4337.12759

119. Moreno, H. M., Tovar, C. A., Domínguez-Timón, F., Cano-Báez, J., Díaz, M. T., Pedrosa, M. M. et al. (2020). Gelation of commercial pea protein isolate: Effect of microbial transglutaminase and thermal processing. Food Science and Technology (Campinas), 40(4), 800–809. http://dx.doi.org/10.1590/fst.19519

120. Yaputri, B. P., Feyzi, S., Ismail, B. P. (2023). Transglutaminase-induced polymerization of pea and chickpea protein to enhance functionality. Gels, 10(1), Article 11. http://dx.doi.org/10.3390/gels10010011

121. Masiá, C., Ong, L., Logan, A., Stockmann, R., Gambetta, J., Jensen, P. et al. (2023). Enhancing the textural and rheological properties of fermentationinduced pea protein emulsion gels with transglutaminase. Soft Matter, 20(1), 133–143. https://doi.org/10.1039/D3SM01001E

122. Zhang, J., Li, T., Chen, Q., Liu, H., Kaplan, D. L., Wang, Q. (2023). Application of transglutaminase modifications for improving protein fibrous structures from different sources by high-moisture extruding. Food Research International, 166(2), Article 112623. https://doi.org/10.1016/j.foodres.2023.112623

123. Redd, A. J., Pike, O. A., Ahlborn, G. J. (2023). Effects of microbial transglutaminase on gluten-free sourdough bread structure and loaf characteristics. Journal of Cereal Science, 115(10), Article 103833. https://doi.org/10.1016/j.jcs.2023.103833

124. Shen, Y., Hong, S., Li, Y. (2022). Pea protein composition, functionality, modification, and food applications: A review. Advances in Food and Nutrition Research, 101, 71–127. https://doi.org/10.1016/bs.afnr.2022.02.002

125. Fernández Sosa, E. I., Chaves, M. G., Quiroga, A. V., Avanza, M. V. (2021). Comparative study of structural and physicochemical properties of pigeon pea (Cajanus cajan L.) protein isolates and its major protein fractions. Plant Foods for Human Nutrition, 76(1), 37–45. https://doi.org/10.1007/s11130-020-00871-7

126. Lei, D., Li, J., Zhang, C., Li, S., Zhu, Z., Wang, F. et al. (2022). Complexation of soybean protein isolate with β-glucan and myricetin: Different affinity on 7S and 11S globulin by QCM-D and molecular simulation analysis. Food Chemistry: X, 15(3), Article 100426. https://doi.org/10.1016/j.fochx.2022.100426

127. Feng, X., Wu, X., Gao, T., Geng, M., Teng, F., Li, Y. (2024). Revealing the interaction mechanism and emulsion properties of carboxymethyl cellulose on soy protein isolate at different pH. Food Hydrocolloids, 150(4), Article 109739. https://doi.org/10.1016/j.foodhyd.2024.109739

128. Soto–Madrid, D., Pérez, N., Gutiérrez-Cutiño, M., Matiacevich, S., Zúñiga, R. N. (2023). Structural and physicochemical characterization of extracted proteins fractions from chickpea (Cicer arietinum L.) as a potential food ingredient to replace ovalbumin in foams and emulsions. Polymers, 1(15), Article 110. https://doi.org/10.3390/polym15010110

129. Chang, L., Lan, Y., Bandillo, N., Ohm, J.-B., Chen, B., Rao, J. (2021). Plant proteins from green pea and chickpea: Extraction, fractionation, structural characterization and functional properties. Food Hydrocolloids, 123(20), Article 107165. https://doi.org/10.1016/j.foodhyd.2021.107165

130. Verkempinck, S. H. E., Duijsens, D., Mukherjee, A., Wilde, P. J. (2024). Pea protein extraction method impacts the protein (micro)structural organisation and in vitro digestion kinetics. Food and Function, 15(20), 953–966. https://doi.org/10.1039/D3FO04225A

131. GopikaJayaprakash, Chawla, P., Sridhar, K., Bains, A. (2023). Interactions of legume phenols-rice protein concentrate towards improving vegan food quality: Development of a protein–phenols enriched fruit smoothie. Food Research International, 171(1), Article 113075. https://doi.org/10.1016/j.foodres.2023.113075

132.


Review

For citations:


Kolpakova V.V., Byzov V.A. Functional characteristics and molecular structural modification of plant proteins. Review. Food systems. 2024;7(3):324-335. (In Russ.) https://doi.org/10.21323/2618-9771-2024-7-3-324-335

Views: 721


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)