Preview

Food systems

Advanced search

Current developments in grain science. Review

https://doi.org/10.21323/2618-9771-2024-7-3-444-453

Abstract

An analytical review of publications on the most relevant and promising areas in the field of grain science is presented: innovative technologies for processing cereals, legumes and oilseeds, obtaining composite types of flour and cereals with a balanced composition and functional properties; assessment of their technological, biochemical, rheological and organoleptic indicators. The authors examined options for their use in the production of fortified flour and cereal products for both general and special purposes; enzymatic methods for modifying by-products (secondary products) of grain and grain mixtures processing; the use of microbial enzyme preparations with cellulolytic, proteolytic and phytase action as a tool for deep processing of by-products (secondary raw materials) to obtain grain hydrolysates and structurally modified bran — valuable components for increasing the nutritional and biological value of food products and feed, as well as a source of available nitrogen and phosphorus nutrition for yeast in fermentation technologies; development of methods for determining norms and duration of safe storage of grain and grain products — wheat flour and semolina, based on the acid value of fat; assessment of the quality and microbiological safety of grain; development of requirements for the targeted use of bakery, confectionery, pasta, and culinary flour; scientifically based approaches to measures to protect grain reserves from pests. An analysis of publications that reflect the most important and pressing issues in grain science demonstrates the close relationship between fundamental and applied research, which is generally aimed at ensuring food security and maintaining public health.

About the Authors

E. P. Meleshkina
All-Russian Scientific and Research Institute for Grain and Products of its Processing
Russian Federation

Elena P.  Meleshkina - Doctor of Technical Sciences, Director

11, Dmitrovskoye Shosse, Moscow, 127434

Теl.: +7–499–976–23–23



L. V. Vanina
All-Russian Scientific and Research Institute for Grain and Products of its Processing
Russian Federation

Lyudmila V. Vanina — Candidate of Chemical Sciences, Deputy Director for Research

11, Dmitrovskoe highway, Moscow, 127434

Tel.: +7–916–498–59–27



I. S. Vitol
All-Russian Scientific and Research Institute for Grain and Products of its Processing
Russian Federation

Irina S. Vitol — Candidate of Biological Sciences, Docent, Senior Researcher

11, Dmitrovskoye Shosse, Moscow, 127434


Tel.: +7–926–709–02–07



References

1. Kuzmin, S. V., Rusakov, V. N., Setko, A. G. (2024). Assessment of the state of actual nutrition in the population of the Russian Federation. Hygiene and Sanitation, 103(1), 58–66. (In Russian)] https://doi.org/10.47470/0016-9900-2024-103-1-58-66

2. Tarasenko, N. A., Baranova, Z. A. (2016). Current research in nutritiology and prevention of nutritional improper. Izvestiya Vuzov. Food Technology, 4(352), 6–9.

3. Mitin, S. G., Cheboterev, S. N., Nikitin, I. A., Anichkina, O. A., Ivanova, N. G. et al. (2022). Current trends in the use of bread products in the Russian Federation and approaches to the development of bakery products for healthy nutrition. Khleboproducty, 3, 40–45. (In Russian)

4. Nevskaya, E. V., Tyurina, I. A., Turina, O. E., Shulbaeva, M. T., Potapova, M. N., Golovacheva, Ya. S. (2019). Healthy bakery composite mixes. Food Processing: Techniques and Technology, 49(4), 531–544. (In Russian)]. https://doi.org/10.21603/2074-9414-2019-4-531-544

5. Renzyaeva, T. V., Tuboltseva, A. S., Renzyaev, A. O. (2022). Various flours in pastry production technology. Food Processing: Techniques and Technology, 52(2), 407–416. (In Russian)] https://doi.org/10.21603/2074-9414-2022-2-2373

6. Kozmina, N. P. (1976). Biochemistry of grain and its processed products. Moscow: KOLOS, 1976.

7. Hoseney, R. C. (1986). Principles of Cereal Science and Technology. — St. Paul, Minnesota, USA: American Association of Cereal Chemists, Inc., 1986.

8. Pankratov, G. N., Meleshkina, E. P., Vitol, I. S., Kechkin, I. A., Nagainikova, J. R. (2020). Technological schemes for the processes of preparation and milling binary grain mixtures and biochemical evaluation of produced products. Food Systems, 3(3), 14–19. https://doi.org/10.21323/2618-9771-2020-3-3-14-19

9. Pankratov, G. N., Vitol, I. S., Meleshkina, E. P., Nagainikova, Yu. R., Kechkin, I. A. (February 26–29, 2020). Development of technological schemes for the processes of preparation and milling of two-component grain mixtures. IOP Conference Series: Earth and Environmental Science, International Conference on Production and Processing of Agricultural Raw Materials, Voronezh, Russian Federation, 2020. https://doi.org/10.1088/1755-1315/640/2/022049

10. Pankratov, G. N., Meleshkina, E. P., Vitol, I. S., Kechkin, I. A., Nagainikova, Yu. R., Kolomiets, S. N. (2020). Wheat-linen flour: Conditions for producing and biochemical features. Russian Agricultural Sciences, 46(4), 404–409. http://doi.org/10.3103/S1068367420040138

11. Vitol, I. S., Pankratov, G. N., Meleshkina, E. P. (February 26–29, 2020). Biochemical characteristics of new varieties of flour from a binary mixture of wheat and flax. IOP Conference Series: Earth and Environmental Science, International Conference on Production and Processing of Agricultural Raw Materials, Voronezh, Russian Federation, 2020. https://doi.org/10.1088/1755-1315/640/2/022050

12. Pankratov, G. N., Meleshkina, E. P., Vitol, I. S., Kolomiets, S. N., Kechkin, I. A. (2021). Wheat-flaxseed flour: The conditions for obtaining and storage capability. Food Industry, 2, 55–59. (In Russian)] https://doi.org/10.24412/0235-2486-2021-2-0019

13. Vitol, I. S., Meleshkina, E. P., Pankratov, G. N., Kechkin, I. A. (2022). New approaches to the transformation of grain raw materials for the production of composite flour. Izvestiya Vuzov. Food Technology, 5(389), 6–9. (In Russian)] https://doi.org/10.26297/0579-3009.2022.5.1

14. Pankratov, G. N., Kechkin, I. A., Vitol, I. S., Kolomiets, S. N. (2022). Obtaining wheat-flax flour from grain processing products. Food Industry, 6, 47–50. (In Russian)] https://doi.org/10.52653/PPI.2022.6.6.011

15. Pankratov, G. N., Meleshkina, E. P., Vitol, I. S., Kechkin, I. A., Kolomiets, S. N. (2022). Technological indicators of various grades of three-component flour. Food Industry, 5, 16–19. (In Russian)] https://doi.org/10.52653/PPI.2022.5.5.004

16. Vitol, I. S., Meleshkina, E. P., Pankratov, G. N. (2022). Biochemical features of new varieties of three-component flour. Food Industry, 6, 8–11. (In Russian)] https://doi.org/10.52653/PPI.2022.6.6.001

17. Samchuk, T. V., Osipchuk, I. R., Kechkin, I. A., Belyavskaya, I. G. (2022). Improving the technology of bakery products by using wheat-nut flour based on pine nuts. Khleboproducty, 8, 32–35. (In Russian)]

18. Kolomiets, S. N., Meleshkina, E. P., Bundina, O. I., Gerasina, A. Yu., Zhiltsova, N. S., Kirillova, E. V. (2023). Comprehensive assessment of the quality of two-component flour enriched with PUFA. Food Industry, 10, 6–9. (In Russian)] http://doi.org/10.52653/PPI.2023.10.10.001

19. Pankratov, G. N., Meleshkina, E. P., Vitol, I. S., Kechkin, I. A., Kolomiets, S. N. (2022). Protein-fat concentrate for enriching wheat flour. Food Systems, 5(2), 107–113. (In Russian)] https://doi.org/10.21323/2618-9771-2022-5-2-107-113

20. Zverev, S. V., Bondarenko, Yu. V., Glukhova, E. V. (2021). The use of mixtures based on legume grains in the baking industry. Khleboproducty, 10, 36–40. (In Russian)] https://doi.org/10.32462/0235-2508-2021-30-10-36-40

21. Zverev, S. V., Zubtsov, V. A., Lobanov, V. G., Roslyakov, Yu. F., Glukhova, E. V. (2020). Flaxseed cake in protein food additives. Izvestiya Vuzov. Food Technology, 5–6(377–378), 93–97. (In Russian)] http://doi.org/110.26297/0579-3009.2020.5-6.22

22. Zverev, S. V., Politukha, O. V. (2022). Balanced composition of multicomponent groats in conditions of the adequate nutrition concept. Food Systems, 5(3), 185–194. (In Russian)] http://doi.org/10.21323/2618-9771-2022-5-3-185-194

23. Korobeynikova, M. M., Zverev, S. V., Politukha, O. V. (2023). Functional composite cereals of increased nutritional value. Food Industry, 3, 6–10. (In Russian)] http://doi.org/10.52653/PPI.2023.3.3.001

24. Zverev, S. V., Karpov, V. I., Nikitina, M. A. (2021). Optimization of food compositions according to the ideal protein profile. Food Systems, 4(1), 4–11. (In Russian)] https://doi.org/10.21323/2618-9771-2021-4-1-4-11

25. Zverev, S. V., Karpov, V. I., Klokonos, M. V., Sorokin, A. E., Masyagin, G. M. (17–18, June 2021). Optimization of food compositions according to the ideal protein profile in a personalized nutrition system. IOP Conference Series: Earth and Environmental Science, V International Workshop on Innovations in Agro and Food Technologies (WIAFT-V-2021), Volgograd, Russian Federation, 2020. http://doi.org/10.1088/1755-1315/848/1/012021

26. Zverev, S. V., Politukha, O. V., Pankratieva, I. A., Bobkov, S. V., Donskaya, M. V. (2020). Enrichment of cereals with chickpeas. Khleboproducty, 2, 42–45. (In Russian)]

27. Meleshkina, E. P., Bundina, O. I., Khuhrin A. S. (February 24–25, 2021). Sustainable grain complex development of Russia: Formation of grain clusters. E3S Web of Conferences. International Scientific and Practical Conference «Fundamental and Applied Research in Biology and Agriculture: Current Issues, Achievements and Innovations» (FARBA 2021), Orel, Russia, 2021. https://doi.org/10.1051/e3sconf/202125410012

28. Bundina, O. I., Koval, A. I. (2022). Development strategy of the grain complex of the Russian Federation: Processing and use of grain. Food Industry, 5, 36–38. (In Russian)] https://doi.org/10.52653/PPI.2022.5.5.011

29. Meleshkina, E. P., Kolomiets S. N., Zhiltsova, N. S., Bundina, O. I. (2021). Modern assessment of baking properties of Russian wheat. Proceedings of the Voronezh State University of Engineering Technologies, 83(1), 155–162. (In Russian)] http://doi.org/10.20914/2310-1202-2021-1-155-162

30. Meleshkina, E. P., Kolomiets S. N., Bundina O. I., Zhiltsova, N. S. (2023). Modern requirements for the quality of valuable wheat in Russia. Food Industry, 6, 6–8. (In Russian)] https://doi.org/10.52653/PPI.2023.6.6.001

31. Meleshkina, E. P., Kolomiets, S. N., Cheskidova, A. S. (2020). Using an alveograph in developing requirements for the quality of flour for the production of wafer sheets. Khleboproducty, 12, 52–58. (In Russian)]. https://doi.org/10.32462/0235-2508-2020-29-12-52-58

32. Meleshkina, E. P., Kolomiets, S. N., Koval, A. I., Cheskidova, A. S., Zhiltsova, N. S. (2021). Relationship of indicators of rheological properties of the dough with the quality of the cracker. Food Industry, 7, 59–63. (In Russian)] http://doi.org/10.52653/PPI.2021.7.7.018

33. Meleshkina, E. P., Kolomiets, S. N., Zhil’tsova, N. S., Bundina, O. I. (2021). Development of requirements for the targeted use of flour using the example of flour culinary products — dumplings. Food Industry, 3, 19–22. (In Russian)] https://doi.org/10.24412/0235-2486-2021-3-0022

34. Meleshkina, E. P., Kolomiets, S. N., Bundina, O. I., Cheskidova, A. S. (2021). Application of the alveograph device for the development of requirements for the quality of flour for the production of a wafer sheet. IOP Conference Series. Earth and Environmental Science. International Conference on Agricultural Science and Engineering, 845, Article 012135. http://doi.org/10.1088/1755-1315/845/1/012135

35. Gerasina, A. Yu., Kolomiets, S. N. (2024). The influence of the amount of damaged starch on the technological properties of wheat flour. Food Industry, 5, 14–16. (In Russian)] http://doi.org/10.52653/PPI.2024.5.5.003

36. Meleshkina, E. P., Kolomiets, S. N., Zhiltsova, N. S. (2023). Amount of damaged starch in laboratory and production grinding flour. Proceedings of the Voronezh State University of Engineering Technologies, 85(3), 67–73. (In Russian)] https://doi.org/10.20914/2310-1202-2023-3-67-73

37. Petrov, G. P., Bundina O. I., Parfenova, E. G., Rutkovskaya, T. S. (2023). Development of express method of near-infrared spectroscopy to determine moisture, protein, gluten amount. Khleboproducty, 5, 30–33. (In Russian)] https://doi.org/10.32462/0235-2508-2023-32-5-30-33

38. Yaitskikh, A. V., Stepanenko, D. S. (2022). Exposure of a surface wheat grain microbiota to gamma rays and accelerated electrons. Izvestiya Vuzov. Food Technology, 5(389), 46–49. (In Russian)] https://doi.org/10.26297/0579-3009.2022.5.10

39. Yaitskikh, A. V., Stepanenko, D. S. (2022). Methods for control of fusarium head blight grain. Food Industry, 12, 22–25. (In Russian)] https://doi.org/10.52653/PPI.2022.12.12.004

40. Meleshkina, E. P., Zhiltsova, N. S., Kolomiets, S. N., Bundina, O. I. (2019). Comparison of Russian assessment of bakery properties of wheat and determination of grain quality using mixolab. Proceedings of the Voronezh State University of Engineering Technologies, 81(3), 70–80. (In Russian)] http://doi.org/10.20914/2310-1202-2019-3-70-80

41. Priezzheva, L. G., Sorochinsky, V. F., Verezhnikova, I. A., Koval, A. I. (2021). Changes in biochemical and physicochemical parameters of wheat food grain during long-term laboratory storage. Khleboproducty, 1, 40–43. (In Russian)] http://doi.org/10.32462/0235-2508-2021-30-1-40-43

42. Yaitskikh, A. V., Vanina, L. V., Priezzheva, L. G. (2021). The effect of microorganisms on the change of fat acidity value during long-term storage of wheat grain. Food Industry, 5, 13–15. (In Russian)] http://doi.org/10.52653/PPI.2021.5.5.002

43. Vanina, L. V., Yaitskikh, A. V., Volkova, O. V., Stepanenko, D. S. (2021). Standards of freshness and shelf life of food grain of wheat. Food Industry, 12, 64–67. (In Russian)] http://doi.org/10.52653/PPI.2021.12.12.0124

44. Priezzheva, L. G., Sorochinsky, V. F., Verezhnikova, I. A., Koval, A. I., Yaitskikh, A. V. (2019). Changes in the biochemical, physicochemical and microbiological properties of wheat baking flour during the ripening process. Khleboproducty, 10, 56–59. (In Russian)] http://doi.org/10.32462/0235-2508-2019-28-10-56-59

45. Priezzheva, L. G., Sorochinsky, V. F., Verezhnikova, I. A., Kolomiets, S. K. (2019). A method for determining the ripening period of wheat flour based on the acid number of fat. Khleboproducty, 7, 49–51. (In Russian)] http://doi.org/10.32462/0235-2508-2019-29-7-49-51

46. Gavrichenkov, Yu. D., Razvorotnev, A. S., Kechkin, I. A., Verezhnikova, I. A. (2019). Change of the acid number of wheat grain fat while stored in laboratory conditions. Food Systems, 2(2), 27–30. http://doi.org/10.21323/2618-9771-2019-2-2-27-30

47. Yaitskikh, A. V., Vanina, L. V., Kirillova, E. V. (2024). Changes in quality indicators of wheat flour during its maturation. Food Industry, 5, 60–62. (In Russian)] http://doi.org/10.52653/PPI.2024.5.5.017

48. Volkova, O. V., Vanina, L. V. (2022). Acid number of fat as an indicator of freshness and shelf life of semolina. Food Industry, 5, 53–54. (In Russian)] http://doi.org/10.52653/PPI.2022.5.5.019

49. Vanina, L. V., Yaitskikh, A. V. (2023). Relationship of FAV with organoleptic indicators of grain and porridge prepared from it. Food Industry, 6, 9–11. (In Russian)] http://doi.org/10.52653/PPI.2023.6.6.002

50. Vanina, L. V., Yaitskikh, A. V., Volkova, O. V., Verezhnikova, I. A. (2023). Establishment of norms for freshness and suitability of semolina according to FAV. Food Industry, 4, 75–77. (In Russian)] http://doi.org/10.52653/PPI.2023.4.4.013

51. Stepanenko, D. S., Yaitskikh, A. V. (2021). Efficiency of the method for determination of uric acid in grain using HPLC. Food Systems, 4(3S), 286–291. (In Russian)] https://doi.org/10.21323/2618-9771-2020-4-3S-286-291

52. Yaitskikh, A. V., Zakladnoy, G. A., Stepanenko, D. S. (2023). Determination of uric acid in grain products by HPLC. Food Industry, 6, 24–26. (In Russian)] http://doi.org/10.52653/PPI.2023.6.6.007

53. Zakladnoy, G. A., Yaitskikh, A. V. (2020). Dependence of uric acid content in stored grain on the population density of the rice weevil Sitophilus oryzae (L.) (Coleoptera, Dryophthoridae). Entomological Review, 100(2), 170–172. http://doi.org/10.1134/S0013873820020049

54. Zakladnoy, G. A., Yaitskikh, A. V., Stepanenko, D. S. (2022). Formation of uric acid in grain produced by Rhyzopertha dominica (f.). Food Systems, 5(2), 139–144. (In Russian)] http://doi.org/10.21323/2618-9771-2022-5-2-139-144

55. Yaitskikh, A. V., Zakladnoy, G. A., Stepanenko, D. S. (2024). Features of formation of uric acid by Tribolium confusum Duv. (Tenebrionidae) in stored grain. Food Industry, 3, 26–28. (In Russian) http://doi.org/10.52653/PPI.2024.3.3.005

56. stepanenko, d. s., zakladnoy, g. a., yaitskikh, a. v. (2024). accumulation of uric acid in stored grain by the oryzaephilus surinamensis (l.). food industry, 5, 8–10. (in russian)] http://doi.org/10.52653/ppi.2024.5.5.001

57. Zakladnoy, G. A., Yaitskikh, A. V., Stepanenko, D. S. (2023). Distribution of uric acid in the grinding products of grain affected by rice weevil. Food Industry, 3, 79–81. (In Russian)] http://doi.org/10.52653/PPI.2023.3.3.016

58. Vitol, I. S., Meleshkina, E. P., Pankratov, G. N. (2022). [Bran from a composite grain mixture is an object of deep processing. Part 1. Protein-proteinase complex. Food Systems, 5(4), 282–288. (In Russian)] https://doi.org/10.21323/2618-9771-2022-5-4-282-288

59. Vitol, I. S., Meleshkina, E. P., Pankratov, G. N. (2023). Bran from a composite grain mixture as an object of deep processing. Part 2. Carbohydrate-amylase and lipid complexes. Food Systems, 6(1), 22–28. (In Russian)] https://doi.org/10.21323/2618-9771-2023-6-1-22-28

60. Poutanen, K. S., Kårlund, A. O., Gómez-Gallego, C., Johansson, D. P., Scheers, N. M., Marklinder, I. M. et al. (2022). Grains — a major source of sustainable protein for health. Nutrition Reviews, 80(6), 1648–1663. https://doi.org/10.1093/nutrit/nuab084

61. Vitol, I. S., Meleshkina, E. P. (2023). Polycomponent bran is a valuable secondary product. Khleboproducty, 11, 58–63. (In Russian)] http://doi.org/10.32462/0235-2508-2023-32-11-58-63

62. Nikiforova, T. A., Khon, I. A., Leonova, S. A., Veber, A. L., Kraus, S.V. (2020). Rational use of by-products of flour and grain production. Khleboproducty, 11, 30–32. (In Russian)]

63. Krikunova, L. N., Meleshkina, E. P., Vitol, I. S., Dubinina, E. V., Obodeeva, O. N. (2023). Grain bran hydrolysates in the production of fruit distillates. Foods and Raw Materials, 11(1), 35–42. https://doi.org/10.21603/2308-4057-2023-1-550

64. Vitol, I. S., Meleshkina, E. P., Krikunova, L. N. (2023). Compositions of enzyme preparations for targeted modification of bran. Food Systems, 6(4), 457–462. (In Russian)] https://doi.org/10.21323/2618-9771-2023-6-4-457-462

65. Bilal, M., Iqbal, H.M.N. (2020). State-of-the-art strategies and applied perspectives of enzyme biocatalysis in the food sector — current status and future trends. Critical Reviews Food Science and Nutrition, 60(12), 2052–2066. https://doi.org/10.1080/10408398.2019.1627284

66. Boltovsky, V. S. Enzymatic hydrolysis of plant raw materials: State and prospects. Proceedings of the National Academy of Sciences of Belarus. Chemical Series, 57(4), 502–512 (In Russian)] https://doi.org/10.29235/1561-8331-2021-57-4-502-512

67. Vitol, I. S., Igoryanova, N. A., Meleshkina, E. P. (2019). Bioconversion of secondary products of processing of grain cereals crops. Food Systems, 2(4), 18–24. https://doi.org/10.21323/2618-9771-2019-2-4-18-24

68. Tolkacheva, A. A., Cherenkov, D. A., Korneeva, O. S., Ponomarev, P. G. (2017). Enzymes of industrial purpose — review of the market of enzyme preparations and prospects for its development. Proceedings of the Voronezh State University of Engineering Technologies, 79(4), 197–203. (In Russian)]. https://doi.org/10.20914/2310-1202-2017-4-197-203

69. Serba, E. M., Rimareva, L. V., Overchenko, M. V., Ignatova, N. I., Pogorzhel’skaya, N. S. (2022). The role of biocatalysis in grain processing technologies. Food Industry, 5, 13–15. (In Russian)]. https://doi.org/10.52653/PPI.2022.5.5.003

70. Kostyleva, E.V., Sereda, A.S., Velikoretskaya, I.A., Kurbatova, E.I., Tsurikova, N.V. (2023). Proteases for obtaining of food protein hydrolysates from proteinaceous by-products. Problems of Nutrition, 92(1), 116– 132 (In Russian)] https://doi.org/10.33029/0042-8833-2023-92-1-116-132

71. Zorin, S. N. (2019). Enzymatic hydrolysates of foods for therapeutic and prophylactic nutrition. Problems of Nutrition, 88(3), 23–31. (In Russian)] https://doi.org/10.24411/0042-8833-2019-10026

72. Sokolov, D. V., Bolkhonov, B. A., Zhamsaranova, S. D., Lebedeva, S. N., Bazhenova, B. A. (2023). Enzymatic hydrolysis of soy protein. Food Processing: Techniques and Technology, 53(1), 86–96. (In Russian)]. https://doi.org/10.21603/2074-9414-2023-1-2418

73. Vitol, I. S., Meleshkina, E. P. (2021). Enzymatic transformation of wheat-flax bran. Food Industry, 9, 20–22. (In Russian)] https://doi.org/10.52653/PPI.2021.9.9.004

74. Vitol, I. S. (2022). Structurally modified bran is an innovative product of deep grain processing. Food Industry, 5, 27–29. (In Russian)] https://doi.org/10.52653/PPI.2022.5.5.008

75. Vitol, I. S. (2023). Efficiency of enzyme preparations in obtaining hydrolysates from bran. Food Industry, 6, 48–50. (In Russian)] https://doi.org/10.52653/PPI.2023.6.6.015

76. Rogachev, V. A., Merzlyakova, O. G., Lukyanchikova, N. L., Mager, S. N. (2022). Protein-vitamin flour from wheat bran enriched with phytase in the diet of quails. Siberian Bulletin of Agricultural Science, 52(2), 46–54. (In Russian)]

77. Rogachev, V. A., Merzlyakova, O. G., Chegodaev, V. G., Lukyanchikova, N. L. (2021). Fractionated protein and vitamin meal from wheat bran in the diets of laying quails. Feeding of Farm Animals and Feed Production, 11, 40–49. (In Russian)] https://doi.org/:10.33920/sel-05-2111-05

78. Lukyanchikova, N. L., Skryabin, V. A., Tabanyukhov, K. A. (2020). Peculiarities of the composition of wheat and rye bran and their role in the prevention of chronic diseases of human review. Innovations and Food Security, 4, 41–58. (In Russian)] https://doi.org/10.31677/2072-6724-2020-30-4-41-58

79.


Review

For citations:


Meleshkina E.P., Vanina L.V., Vitol I.S. Current developments in grain science. Review. Food systems. 2024;7(3):444-453. (In Russ.) https://doi.org/10.21323/2618-9771-2024-7-3-444-453

Views: 605


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2618-9771 (Print)
ISSN 2618-7272 (Online)