CHITOSAN APPLICATION IN FOOD TECHNOLOGY: A REVIEW OF RESCENT ADVANCES
https://doi.org/10.21323/2618-9771-2020-3-1-10-15
Abstract
The review focused on global trends in the development of scientific research and the practical applications of chitosan in food technology in recent years. Chitin and its derivative chitosan obtaining from the crustacean shells and the cell wall of fungi are among the most common biopolymers in the world. Chitosan is a polysaccharide discerned by a large number of unsubstituted amino groups. Featured properties of chitosan providing its high chemical and biological activities. Chitosan has various abilities as polycationite, film former, antimicrobial and antioxidant agent. Multifunctional properties open up broad prospects for the chitosan applications in various fields of technology, medicine and industry. The most attention in the review is paid to the works on extending food products shelf life with chitosan based primary edible film coatings and biodegradable packaging. At the same time chitosan applications as an emulsifier, a flocculant, as well as functional food additive, nutrient encapsulating material and dietary supplement are highlighted.
About the Authors
V. L. KabanovRussian Federation
Vladimir L. Kabanov — Junior Researcher, Laboratory of technology and processing of biosynthesis products, Аll-Russian Research Institute for Food Ad-ditives — Branch of V. M. Gorbatov Federal Research Center for Food Systems of RAS.
191014, St.-Petersburg, Liteynу prospekt, 55.
Tel: +7–812–273–75–24
L. V. Novinyuk
Russian Federation
Lyudmila V. Novinyuk — candidate of technical sciences, Chief Researcher, Laboratory of technology and processing of biosynthesis products, Аll-Russian Research Institute for Food Additives — Branch of V. M. Gorbatov Federal Research Center for Food Systems of RAS.
191014, St.-Petersburg, Liteynу prospekt, 55.
Tel: +7–812–273–75–24
References
1. Philibert, T., Lee, B. H., Fabien, N. (2017). Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers. Applied Biochemistry and Biotechnology, 181(4), 1314–1337. https://doi.org/10.1007/s12010–016–2286–2
2. Novinyuk, L.V., Kulyov, D.K., Negrutsa, I.V., Velinzon, P.Z. (2018) Chitin- and Chitosan Biosorbents from Citric Acid Mycelial Waste. Food systems, 1(2), 55–62. https://doi.org/10.21323/2618–9771–2018–1–2-55–62 (in Russian)
3. Tyliszczak, B., Drabczyk, A., Kudłacik-Kramarczyk, S., Sobczak-Kupiec, A. (2019). Sustainable Production of Chitosan. Chapter in book: Sustainable Production: Novel Trends in Energy, Environment and Material Systems, 45–60. https://doi.org/10.1007/978–3–030–11274–5_4
4. Wang, J., Chen, C. (2014). Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides. Bioresource Technology, 160, 129–141. https://doi.org/10.1016/j.biortech.2013.12.110
5. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
6. Gutiérrez, T. J. (2017). Chitosan Applications for the Food Industry. Chapter 8 in book: Chitosan: Derivatives, Composites and Applications, 183– 232. https://doi.org/10.1002/9781119364849.ch8
7. Rocha, M. A. M., Coimbra, M. A., Nunes, C. (2017). Applications of chitosan and their derivatives in beverages: a critical review. Current Opinion in Food Science, 15, 61–69. https://doi.org/10.1016/j.cofs.2017.06.008
8. Ngo, D.-H., Vo, T.-S., Ngo, D.-N., Kang, K.-H., Je, J.-Y., Pham, H. N.-D., Buyn, H.-G., Kim, S.-K. (2015). Biological effects of chitosan and its de-rivatives. Food Hydrocolloids, 51, 200–216. 023 https://doi.org/10.1016/j.foodhyd.2015.05.023
9. Friedman, M., Juneja, V. K. (2010). Review of Antimicrobial and Antioxidative Activities of Chitosans in Food. Journal of Food Protection, 73(9), 1737–1761. https://doi.org/10.4315/0362–028x-73.9.1737
10. Verlee, A., Mincke, S., Stevens, C. V. (2017). Recent developments in anti-bacterial and antifungal chitosan and its derivatives. Carbohydrate Polymers, 164, 268–283. https://doi.org/10.1016/j.carbpol.2017.02.001
11. Palma-Guerrero, J., Lopez-Jimenez, J. A., Pérez-Berná, A. J., Huang, I.-C., Jansson, H.-B., Salinas, J., Villalaín, J., Read, N. D., Lopez-Llorca, L. V. (2010). Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Molecular Microbiology, 75(4), 1021–1032. https://doi. org/10.1111/j.1365–2958.2009.07039.x
12. Romanazzi, G., Feliziani, E., Baños, S. B., Sivakumar, D. (2015). Shelf life extension of fresh fruit and vegetables by chitosan treatment. Critical Re-views in Food Science and Nutrition, 57(3), 579–601. https://doi.org/10.1080/10408398.2014.900474
13. Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M., Akhtar, N. (2018). Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. International Journal of Biological Macromolecules, 109, 1095–1107. https://doi.org/10.1016/j.ijbiomac.2017.11.097
14. Mujtaba, M., Morsi, R. E., Kerch, G., Elsabee, M. Z., Kaya, M., Labidi, J., Khawar, K. M. (2019). Current advancements in chitosan-based film production for food technology; A review. International Journal of Biological Macromolecules, 121, 889–904. https://doi.org/10.1016/j.ijbiomac.2018.10.109
15. Kerch, G., Korkhov, V. (2010). Effect of storage time and temperature on structure, mechanical and barrier properties of chitosan-based films. European Food Research and Technology, 232(1), 17–22. https://doi.org/10.1007/s00217–010–1356-x
16. Leceta, I., Molinaro, S., Guerrero, P., Kerry, J. P., de la Caba, K. (2015). Quality attributes of map packaged ready-to-eat baby carrots by using chitosan-based coatings. Postharvest Biology and Technology, 100, 142– 150. https://doi.org/10.1016/j.postharvbio.2014.09.022
17. Villafañe, F. (2016). Edible coatings for carrots. Food Reviews International, 33(1), 84–103. https://doi.org/10.1080/87559129.2016.1150291
18. Leandro, D. S. P., Bitencourt, T. A., Saltoratto, A. L., Seleghim, M. H., Assis, O. B. (2018). Antifungal activity of chitosan and its quaternized derivative in gel form and as an edible coating on cut cherry tomatoes. Journal of Agricultural Sciences, 63(3), 271–285. https://doi.org/10.2298/jas1803271s
19. Olawuyi, I. F., Lee, W. (2019). Influence of chitosan coating and packaging materials on the quality characteristics of fresh-cut cucumber. Korean Journal of Food Preservation, 26(4), 371–380. https://doi.org/10.11002/kjfp.2019.26.4.371
20. Ali, A., Noh, N. M., Mustafa, M. A. (2015). Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food Packaging and Shelf Life, 3, 56–61. https://doi.org/10.1016/j.fpsl.2014.10.003
21. Zahoorullah, S. M., Dakshayani, L., Rani, A. S., Venkateswerlu, G. (2017). Effect of Chitosan Coating on the Post Harvest Quality of Banana during Storage. Asian Journal of Biotechnology and Bioresource Technology, 1(1), 1–10. https://doi.org/10.9734/ajb2t/2017/34732
22. Li, H., Wang, Y., Liu, F., Yang, Y., Wu, Z., Cai, H., Zhang, Q., Wang, Y., Li, P. (2015). Effects of chitosan on control of postharvest blue mold decay of apple fruit and the possible mechanisms involved. Scientia Horticulturae, 186, 77–83. https://doi.org/10.1016/j.scienta.2015.02.014
23. Varasteh, F., Arzani, K., Barzegar, M., Zamani, Z. (2017). Pomegranate (Punica granatum L.) Fruit Storability Improvement Using Prestorage Chitosan Coating Technique. Journal of Agricultural Science Technology, 19(2), 389–400.
24. Wang, J., Yang, B., Zhang, S., Cao, J., Jiang, W. (2016). Effect of thymol on antifungal ability of chitosan coating against Penicillium expansum in Yali pear. Emirates Journal of Food and Agriculture, 28(10), 725–731. https://doi.org/10.9755/ejfa.2015–09–788
25. Kumar, P., Sethi, S., Sharma, R. R., Srivastav, M., Varghese, E. (2017). Effect of chitosan coating on postharvest life and quality of plum during storage at low temperature. Scientia Horticulturae, 226, 104–109. https://doi.org/10.1016/j.scienta.2017.08.037
26. Badawy, M. E. I., Rabea, E. I., El-Nouby, M. A.M., Ismail, R. I. A., Taktak, N. E. M., (2016). Strawberry Shelf Life, Composition, and Enzymes Activity in Response to Edible Chitosan Coatings. International Journal of Fruit Science, 17(2), 117–136. https://doi.org/10.1080/15538362.2016.1219290
27. Bhanushree, L. S., Vasudeva, K. R., Suresha, G. J., Sadananda, G. K., Moha-mad Tayeebulla, H., Halesh, G. K. (2018). Influence of chitosan on postharvest behavior of papaya (Carica papaya L.) Fruits under different storage conditions. Journal of Pharmacognosy and Phytochemistry, 7(2), 2010–2014.
28. Jongsri, P., Wangsomboondee, T., Rojsitthisak, P., Seraypheap, K. (2016). Effect of molecular weights of chitosan coating on postharvest quality and physicochemical characteristics of mango fruit. LWT, 73, 28–36. https://doi.org/10.1016/j.lwt.2016.05.038
29. Remya, S., Mohan, C. O., Bindu, J., Sivaraman, G. K., Venkateshwarlu, G., Ravishankar, C. N. (2015). Effect of chitosan based active packaging film on the keeping quality of chilled stored barracuda fish. Journal of Food Science and Technology, 53(1), 685–693. https://doi.org/10.1007/s13197–015–2018–6
30. Chang, W., Liu, F., Sharif, H. R., Huang, Z., Goff, H. D., Zhong, F. (2018). Preparation of chitosan films by neutralization for improving their preservation effects on chilled meat. Food Hydrocolloids, 90, 50–61. https://doi.org/10.1016/j.foodhyd.2018.09.026
31. Chantarasataporn, P., Tepkasikul, P., Kingcha, Y., Yoksan, R., Pichyangku-ra, R., Visessanguan, W., Chirachanchai, S. (2014). Water-based oligochitosan and nanowhisker chitosan as potential food preservatives for shelf-life extension of minced pork. Food Chemistry, 159, 463–470. https://doi.org/10.1016/j.foodchem.2014.03.019
32. Tayel, A. A., Ibrahim, S. I. A., Al-Saman, M. A., Moussa, S. H. (2014). Production of fungal chitosan from date wastes and its application as a biopreservative for minced meat. International Journal of Biological Mac-romolecules, 69, 471–475. https://doi.org/10.1016/j.ijbiomac.2014.05.072
33. Lozano-Navarro, J., Díaz-Zavala, N., Velasco-Santos, C., Melo-Banda, J., Páramo-García, U., Paraguay-Delgado, F., Martínez-Hernández, A. L., Zapién-Castillo, S. (2018). Chitosan-Starch Films with Natural Extracts: Physical, Chemical, Morphological and Thermal Properties. Materials, 11(1), 120. https://doi.org/10.3390/ma11010120
34. Shariatinia, Z., Fazli, M. (2015). Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch. Food Hydrocolloids, 46, 112–124. https://doi.org/10.1016/j.food-hyd.2014.12.026
35. Sundaram, J., Pant, J., Goudie, M. J., Mani, S., Handa, H. (2016). Antimicrobial and Physicochemical Characterization of Biodegradable, Nitric Oxide-Releasing Nanocellulose–Chitosan Packaging Membranes. Journal of Agricultural and Food Chemistry, 64(25), 5260–5266. https://doi.org/10.1021/acs.jafc.6b01936
36. Bansal, M., Chauhan, G. S., Kaushik, A., Sharma, A. (2016). Extraction and functionalization of bagasse cellulose nanofibres to Schiff-base based antimicrobial membranes. International Journal of Biological Macromolecules, 91, 887–894. https://doi.org/10.1016/j.ijbiomac.2016.06.045
37. Poverenov, E., Danino, S., Horev, B., Granit, R., Vinokur, Y., Rodov, V. (2013). Layer-by-Layer Electrostatic Deposition of Edible Coating on Fresh Cut Melon Model: Anticipated and Unexpected Effects of Alginate– Chitosan Combination. Food and Bioprocess Technology, 7(5), 1424–1432. https://doi.org/10.1007/s11947–013–1134–4
38. Souza, M. P.; Vaz, A. F. M.; Cerqueira, M. A.; Texeira, J. A.; Vicente, A. A.; Carneiro-da-Cunha, M. G. (2015). Effect of an ediblenanomultilayer coating by electrostatic self-assembly on the shelf life of fresh-cut man-goes. Food Bioprocess Technology, 8(3), 647–654. https://doi.org/10.1007/s11947–014–1436–1
39. Younis, H. G. R., Zhao, G. (2019). Physicochemical properties of the edible films from the blends of high methoxyl apple pectin and chitosan. International Journal of Biological Macromoleculesm, 131, 1057–1066. https://doi.org/10.1016/j.ijbiomac.2019.03.096
40. Volpe, S., Torrieri, E., Cavella, S. (2017). Use of Chitosan and Chitosan-Caseinate Coating to Prolong Shelf Life of Minimally Processed Apples. SLIM 2017 — Shelf-life International Meeting — Special issue of Italian Jour-nal of Food Science, 29(5), 30–35.
41. Pérez Córdoba, L. J., Sobral, P. J. A. (2017). Physical and antioxidant proper-ties of films based on gelatin, gelatin-chitosan or gelatin-sodium casein-ate blends loaded with nanoemulsified active compounds. Journal of Food Engineering, 213, 47–53. https://doi.org/10.1016/j.jfoodeng.2017.05.023
42. Qiao, C., Ma, X., Zhang, J., Yao, J. (2017). Molecular interactions in gelatin/chitosan composite films. Food Chemistry, 235, 45–50. https://doi.org/10.1016/j.foodchem.2017.05.045
43. Ahmed, S., Ikram, S. (2016). Chitosan and gelatin based biodegradable packaging films with UV-light protection. Journal of Photochemistry and Photobiology B: Biology, 163, 115–124. https://doi.org/10.1016/j.jphotobiol.2016.08.023
44. Ahmad, M., Nirmal, N. P., Danish, M., Chuprom, J., Jafarzedeh, S. (2016). Characterisation of composite films fabricated from collagen/chitosan and collagen/soy protein isolate for food packaging applications. RSC Advances, 6(85), 82191–82204. https://doi.org/10.1039/c6ra13043g
45. Velickova, E., Winkelhausen, E., Kuzmanova, S., Moldão-Martins, M., Alves, V. D. (2013). Characterization of multilayered and composite edible films from chitosan and beeswax. Food Science and Technology Inter-national, 21(2), 83–93. https://doi.org/10.1177/1082013213511807
46. Wang, H., Qian, J., Ding, F. (2018). Emerging Chitosan-Based Films for Food Packaging Applications. Journal of Agricultural and Food Chemistry, 66(2), 395–413. https://doi.org/10.1021/acs.jafc.7b04528
47. Dominguez-Martinez, B. M., Martínez-Flores, H. E., Berrios, J. D. J., Otoni, C. G., Wood, D. F., Velazquez, G. (2016). Physical Characterization of Biodegradable Films Based on Chitosan, Polyvinyl Alcohol and Opuntia Mucilage. Journal of Polymers and the Environment, 25(3), 683–691. https://doi.org/10.1007/s10924–016–0851-y
48. Yang, W., Owczarek, J. S., Fortunati, E., Kozanecki, M., Mazzaglia, A., Balestra, G. M., Kenny, J.M., Torre, L., Puglia, D. (2016). Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Industrial Crops and Products, 94, 800–811. https://doi.org/10.1016/j.indcrop.2016.09.061
49. Talón, E., Trifkovic, K. T., Nedovic, V. A., Bugarski, B. M., Vargas, M., Chiralt, A., González-Martínez, C. (2017). Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydrate Polymers, 157, 1153–1161. https://doi.org/10.1016/j.carb-pol.2016.10.080
50. Kalaycıoğlu, Z., Torlak, E., Akın-Evingür, G., Özen, İ., Erim, F. B. (2017). Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. International Journal of Biological Macromolecules, 101, 882–888. https://doi.org/10.1016/j.ijbiomac.2017.03.174
51. Beigzadeh Ghelejlu, S., Esmaiili, M., Almasi, H. (2016). Characterization of chitosan–nanoclay bionanocomposite active films containing milk thistle extract. International Journal of Biological Macromolecules, 86, 613–621. https://doi.org/10.1016/j.ijbiomac.2016.02.012
52. Kaya, M., Ravikumar, P., Ilk, S., Mujtaba, M., Akyuz, L., Labidi, J., Sala-berria, A. M., Cakmak, Y. S. Erkul, S. K. (2018). Production and characterization of chitosan based edible films from Berberis crataegina’s fruit extract and seed oil. Innovative Food Science and Emerging Technologies, 45, 287–297. https://doi.org/10.1016/j.ifset.2017.11.013
53. Bonilla, J., Sobral, P. J. A. (2016). Investigation of the physicochemical, antimicrobial and antioxidant properties of gelatin-chitosan edible film mixed with plant ethanolic extracts. Food Bioscience, 16, 17–25. https://doi.org/10.1016/j.fbio.2016.07.003
54. Tan, Y. M., Lim, S. H., Tay, B. Y., Lee, M. W., Thian, E. S. (2015). Functional chitosan-based grapefruit seed extract composite films for applications in food packaging technology. Materials Research Bulletin, 69, 142–146. https://doi.org/10.1016/j.materresbull.2014.11.041
55. Kumar-Krishnan, S., Prokhorov, E., Hernández-Iturriaga, M., Mota-Mo-rales, J. D., Vázquez-Lepe, M., Kovalenko, Yu., Sanchez, I.C., Luna-Bárcenas, G. (2015). Chitosan/silver nanocomposites: Synergistic antibacterial action of silver nanoparticles and silver ions. European Polymer Journal, 67, 242–251. https://doi.org/10.1016/j.eurpolymj.2015.03.066
56. Raghavendra, G. M., Jung, J., Kim, D., Seo, J. (2016). Microwave assisted antibacterial chitosan–silver nanocomposite films. International Journal of Biological Macromolecules, 84, 281–288. https://doi.org/10.1016/j.ijbiomac.2015.12.026
57. Yu, W.-Z., Zhang, Y., Liu, X., Xiang, Y., Li, Z., Wu, S. (2018). Synergistic an-tibacterial activity of multi components in lysozyme/chitosan/silver/hydroxyapatite hybrid coating. Materials Design, 139, 351–362. https://doi.org/10.1016/j.matdes.2017.11.018
58. Al-Naamani, L., Dobretsov, S., Dutta, J. (2016). Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innovative Food Science and Emerging Technologies, 38, 231–237. https://doi.org/10.1016/j.ifset.2016.10.010
59. Al-Naamani, L., Dobretsov, S., Dutta, J., Burgess, J. G. (2017). Chitosan-zinc oxide nanocomposite coatings for the prevention of marine bio-fouling. Chemosphere, 168, 408–417. https://doi.org/10.1016/j.chemosphere.2016.10.033
60. Rahman, P. M., Mujeeb, V. M. A., Muraleedharan, K. (2017). Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat. International Journal of Biological Macromolecules, 97, 382–391. https://doi.org/10.1016/j.ijbiomac.2017.01.052
61. Can, Ö. P., Yalcin, H., Arslan, A. (2018). Effects of chitosan coating and rosemary oil on rainbow trout (Oncorhynchus mykiss, W. 1792) filets. Indian Journal of Animal Research, 52(1), 160–166. https://doi.org/10.18805/ijar.v0iof.6820
62. Valipour Kootenaie, F., Ariaii, P., Khademi Shurmasti, D., Nemati, M. (2016). Effect of Chitosan Edible Coating Enriched with Eucalyptus Essential Oil and α-Tocopherol on Silver Carp Fillets Quality During Re-frigerated Storage. Journal of Food Safety, 37(1), e12295. https://doi.org/10.1111/jfs.12295
63. Xu, T., Gao, C., Feng, X., Huang, M., Yang, Y., Shen, X., Tang, X. (2019). Cinnamon and clove essential oils to improve physical, thermal and antimicrobial properties of chitosan-gum arabic polyelectrolyte complexed films. Carbohydrate Polymers, 217,116–125. https://doi.org/10.1016/j.carbpol.2019.03.084
64. Noshirvani, N., Ghanbarzadeh, B., Gardrat, C., Rezaei, M. R., Hashemi, M., Le Coz, C., Coma, V. (2017). Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocolloids, 70, 36–45. https://doi.org/10.1016/j.foodhyd.2017.03.015
65. Wang, Y., Xia, Y., Zhang, P., Ye, L., Wu, L., He, S. (2016). Physical Characterization and Pork Packaging Application of Chitosan Films Incorporated with Combined Essential Oils of Cinnamon and Ginger. Food and Bioprocess Technology, 10(3), 503–511. https://doi.org/10.1007/s11947–016–1833–8
66. Shao, X., Cao, B., Xu, F., Xie, S., Yu, D., Wang, H. (2015). Effect of post-harvest application of chitosan combined with clove oil against citrus green mold. Postharvest Biology and Technology, 99, 37–43. https://doi.org/10.1016/j.postharvbio.2014.07.014
67. Ospina, J. D., Grande, C. D., Monsalve, L. V., Advíncula, R. C., Mina, J. H., Valencia, M. E., Fan, J., Rodrigues, D. (2019). Evaluation of the chitosan films of essential oils from Origanum vulgare L (oregano) and Rosmarinus officinalis L (rosemary). Revista Cubana de Plantas Medicinales [On-line], 24(1). [Electronic resource: http://revplantasmedicinales.sld.cu/index.php/pla/article/view/655/355/ Access date 18.02.2020 г.]
68. Quesada, J., Sendra, E., Navarro, C., Sayas-Barberá, E. (2016). Antimi-crobial Active Packaging including Chitosan Films with Thymus vulgaris L. Essential Oil for Ready-to-Eat Meat. Foods, 5(4), 57. https://doi.org/10.3390/foods5030057
69. Sharafati Chaleshtori, F., Taghizadeh, M., Rafieian-kopaei, M., Sharafatichaleshtori, R. (2015). Effect of Chitosan Incorporated with Cumin and Eucalyptus Essential Oils As Antimicrobial Agents on Fresh Chicken Meat. Journal of Food Processing and Preservation, 40(3), 396–404. https://doi.org/10.1111/jfpp.12616
70. Sharafati Chaleshtori, F., Sharafati Chaleshtori, R. (2017). Antimicrobial activity of chitosan incorporated with lemon and oregano essential oils on broiler breast meat during refrigerated storage. Nutrition and Food Science, 47(3), 306–317. https://doi.org/10.1108/nfs-08–2016–0123
71. Perdones, Á., Escriche, I., Chiralt, A., Vargas, M. (2016). Effect of chitosan–lemon essential oil coatings on volatile profile of strawberries during storage. Food Chemistry, 197, 979–986. https://doi.org/10.1016/j.foodchem.2015.11.054
72. Silva-Pereira, M. C., Teixeira, J. A., Pereira-Júnior, V. A., Stefani, R. (2015). Chitosan/corn starch blend films with extract from Brassica oleraceae (red cabbage) as a visual indicator of fish deterioration. LWT — Food Science and Technology, 61(1), 258–262. https://doi.org/10.1016/j.lwt.2014.11.041
73. Ma, Q., Liang, T., Cao, L., Wang, L. (2018). Intelligent poly (vinyl alcohol)-chitosan nanoparticles-mulberry extracts films capable of monitoring pH variations. International Journal of Biological Macromolecules, 108, 576–584. https://doi.org/10.1016/j.ijbiomac.2017.12.049
74. Cazón, P., Vázquez, M., Velazquez, G. (2018). Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeability. Polymer Testing, 69, 536–544. https://doi.org/10.1016/j.polymertesting.2018.06.016
75. Fathima, P. E., Panda, S. K., Ashraf, P. M., Varghese, T. O., Bindu, J. (2018). Polylactic acid/chitosan films for packaging of Indian white prawn (Fenneropenaeus indicus). International Journal of Bio-logical Macromolecules, 117, 1002–1010. https://doi.org/10.1016/j.ijbiomac.2018.05.214
76. Pal, A. K., Katiyar, V. (2016). Nanoamphiphilic Chitosan Dispersed Poly(lactic acid) Bionanocomposite Films with Improved Thermal, Me-chanical, and Gas Barrier Properties. Biomacromolecules, 17(8), 2603– 2618. https://doi.org/10.1021/acs.biomac.6b00619
77. Liu, H., Wang, C., Zou, S., Wei, Z., Tong, Z. (2012). Simple, Reversible Emulsion System Switched by pH on the Basis of Chitosan without Any Hydrophobic Modification. Langmuir, 28(30), 11017–11024. https://doi.org/10.1021/la3021113
78. Rodrı́guez, M.S., Albertengo, L.A., Agulló, E. (2002). Emulsification capacity of chitosan. Carbohydrate Polymers, 48(3), 271–276. https://doi.org/10.1016/s0144–8617(01)00258–2
79. Zhang, C., Xu, W., Jin, W., Shah, B. R., Li, Y., Li, B. (2015). Influence of anionic alginate and cationic chitosan on physicochemical stability and carotenoids bioaccessibility of soy protein isolate-stabilized emulsions. Food Research International, 77, 419–425. https://doi.org/10.1016/j.foodres.2015.09.020
80. Chang, H. W., Tan, T. B., Tan, P. Y., Nehdi, I. A., Sbihi, H. M., Tan, C. P. (2019). Microencapsulation of Fish Oil-In-Water Emulsion Using Thiol-Modified β-Lactoglobulin Fibrils-Chitosan Complex. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2019.07.027
81. Wang, X.-Y., Heuzey, M.-C. (2016). Pickering emulsion gels based on in-soluble chitosan/gelatin electrostatic complexes. RSC Advances, 6(92), 89776–89784. https://doi.org/10.1039/c6ra10378b
82. Zhang, C., Xu, W., Jin, W., Shah, B. R., Li, Y., Li, B. (2015). Influence of anionic alginate and cationic chitosan on physicochemical stability and carotenoids bioaccessibility of soy protein isolate-stabilized emulsions. Food Research International, 77, 419–425. https://doi.org/10.1016/j.foodres.2015.09.020
83. He, B., Ge, J., Yue, P., Yue, X., Fu, R., Liang, J., Gao, X. (2017). Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage. Food Chemistry, 221, 1671–1677. https://doi.org/10.1016/j.foodchem.2016.10.120
84. Abdelmalek, B. E., Sila, A., Haddar, A., Bougatef, A., Ayadi, M. A. (2017). β-Chin and chitosan from squid gladius: Biological activities of chitosan and its application as clarifying agent for apple juice. International Journal of Biological Macromolecules, 104, 953–962. https://doi.org/10.1016/j.ijbiomac.2017.06.107
85. Taştan, Ö., Baysal, T. (2017). Chitosan as a novel clarifying agent on clear apple juice production: Optimization of process conditions and changes on quality characteristics. Food Chemistry, 237, 818–824. https://doi.org/10.1016/j.foodchem.2017.06.025
86. Lei, W., Li, C., Wang, N., Ji, T., Fu, X. (2016). Study on Clarification Effect of Chitosan on Cantaloupe Juice. The Food Industry, 8, 11–13. (in Chinese)
87. Tastan, O., Baysal, T. (2015). Clarification of pomegranate juice with chitosan: Changes on quality characteristics during storage. Food Chemistry, 180, 211–218. https://doi.org/10.1016/j.foodchem.2015.02.053
88. Jiang, Y., You, T., Liu, J., Bao, H. (2015). Application of Chitosan Flocculation on Clarifying of Traditional Chinese Medicine and Fruit Wine. The Food Industry, 2, 228–231. (in Chinese)
89. Qi, G., Gao, D. (2016). Clarification of Dry Red Wine by Chitosan. Liquor-Making Science & Technology, 10, 27–29. (in Chinese)
90. Gassara, F., Antzak, C., Ajila, C. M., Sarma, S. J., Brar, S. K., Verma, M. (2015). Chitin and chitosan as natural flocculants for beer clarification. Journal of Food Engineering, 166, 80–85. https://doi.org/10.1016/j.jfoodeng.2015.05.028
91. Abebe, L., Chen, X., Sobsey, M. (2016). Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment. International Journal of Environ-mental Research and Public Health, 13(3), 269. https://doi.org/10.3390/ijerph13030269
92. Akbari-Alavijeh, S., Shaddel, R., Jafari, S. M. (2019). Nanostructures of chitosan for encapsulation of food ingredients. Chapter in Book: Biopolymer Nanostructures for Food Encapsulation Purposes, 381–418. Academic Press https://doi.org/10.1016/b978–0–12–815663–6.00014–8
93. Al-Nemrawi, N. K., Alsharif, S. S. M., Dave, R. H. (2018). Preparation of chitosan-TPP nanoparticles: the influence of chitosan polymeric properties and formulation variables. International Journal of Applied Pharmaceutics, 10(5), 60–65. https://doi.org/10.22159/ijap.2018v10i5.26375
94. Jiménez-Fernández, E., Ruyra, A., Roher, N., Zuasti, E., Infante, C., Fernández-Díaz, C. (2014). Nanoparticles as a novel delivery system for vitamin C administration in aquaculture. Aquaculture, 432, 426–433. https://doi.org/10.1016/j.aquaculture.2014.03.006
95. Alishahi, A., Mirvaghefi, A., Tehrani, M. R., Farahmand, H., Shojaosadati, S. A., Dorkoosh, F. A., Elsabee, M. Z. (2011). Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chemistry, 126(3), 935–940. https://doi.org/10.1016/j.foodchem.2010.11.086
96. Azevedo, M. A., Bourbon, A. I., Vicente, A. A., Cerqueira, M. A. (2014). Alginate/chitosan nanoparticles for encapsulation and controlled re-lease of vitamin B2. International Journal of Biological Macromolecules, 71, 141–146. https://doi.org/10.1016/j.ijbiomac.2014.05.036
97. Vishwakarma, A., Sriram, P., Preetha, S. P., Tirumurugaan, K. G., Nagarajan, K., Pandian, K. (2019). Synthesis and characterization of Chitosan/ TPP encapsulated curcumin nanoparticles and its antibacterial efficacy against colon bacteria. International Journal of Chemical Studies, 7(3), 602–606.
98. Arunkumar, R., Harish Prashanth, K. V., Baskaran, V. (2013). Promising interaction between nanoencapsulated lutein with low molecular weight chitosan: Characterization and bioavailability of lutein in vitro and in vivo. Food Chemistry, 141(1), 327–337. https://doi.org/10.1016/j.foodchem.2013.02.108
99. Dube, A., Nicolazzo, J. A., Larson, I. (2011). Chitosan nanoparticles enhance the plasma exposure of (–)-epigallocatechin gallate in mice through an enhancement in intestinal stability. European Journal of Pharmaceutical Sciences, 44(3), 422–426. https://doi.org/10.1016/j.ejps.2011.09.004
100. Hu, B., Ting, Y., Yang, X., Tang, W., Zeng, X., Huang, Q. (2012). Nano-chemoprevention by encapsulation of (–)-epigallocatechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of its bioavailability. Chemical Communications, 48(18), 2421. https://doi.org/10.1039/c2cc17295j
101. Hu, B., Ting, Y., Zeng, X., Huang, Q. (2012). Cellular uptake and cyto-toxicity of chitosan–caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Carbohydrate Polymers, 89(2), 362–370. https://doi.org/10.1016/j.carbpol.2012.03.015
102. Zhang, Y., Yang, Y., Tang, K., Hu, X., Zou, G. (2008). Physicochemical characterization and antioxidant activity of quercetin-loaded chitosan nanoparticles. Journal of Applied Polymer Science, 107(2), 891–897. https://doi.org/10.1002/app.26402
103. Zhang, S., Luo, Y., Zeng, H., Wang, Q., Tian, F., Song, J., Cheng, W.-H. (2011). Encapsulation of selenium in chitosan nanoparticles improves selenium availability and protects cells from selenium-induced DNA damage response. The Journal of Nutritional Biochemistry, 22(12), 1137– 1142. https://doi.org/10.1016/j.jnutbio.2010.09.014
104. Luo, Y., Zhang, B., Cheng, W.-H., Wang, Q. (2010). Preparation, characterization and evaluation of selenite-loaded chitosan/TPP nanoparticles with or without zein coating. Carbohydrate Polymers, 82(3), 942–951. https://doi.org/10.1016/j.carbpol.2010.06.029
105. Deshpande, P., Dapkekar, A., Oak, M. D., Paknikar, K. M., Rajwade, J. M. (2017). Zinc complexed chitosan/TPP nanoparticles: A promising micronutrient nanocarrier suited for foliar application. Carbohydrate Polymers, 165, 394–401. https://doi.org/10.1016/j.carbpol.2017.02.061
106. Lopes, M., Shrestha, N., Correia, A., Shahbazi, M.-A., Sarmento, B., Hirvonen, J., Veiga, F., Seiça, R., Ribeiro, A., Santos, H. A. (2016). Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. Journal of Controlled Release, 232, 29–41. https://doi.org/10.1016/j.jconrel.2016.04.012
107. Rabelo, R. S., Oliveira, I. F., da Silva, V. M., Prata, A. S., Hubinger, M. D. (2018). Chitosan coated nanostructured lipid carriers (NLCs) for loading Vitamin D: A physical stability study. International Journal of Biological Macromolecules, 119, 902–912. https://doi.org/10.1016/j.ijbiomac.2018.07.174
108. Ylitalo, R., Lehtinen, S., Wuolijoki, E., Ylitalo, P., Lehtimäki, T. (2002). Cholesterol-lowering properties and safety of chitosan. Arzneimittel-forschung, 52(01), 1–7. https://doi.org/10.1055/s-0031–1299848
109. Bokura, H., Kobayashi, S. (2003). Chitosan decreases total cholesterol in women: a randomized, double-blind, placebo-controlled trial. European Journal of Clinical Nutrition, 57(5), 721–725. https://doi.org/10.1038/sj.ejcn.1601603
110. Patti, A. M., Katsiki, N., Nikolic, D., Al-Rasadi, K., Rizzo, M. (2014). Nutraceuticals in Lipid-Lowering Treatment. Angiology, 66(5), 416–421. https://doi.org/10.1177/0003319714542999
111. Rezaee, M., Askari, G., EmamDjomeh, Z., Salami, M. (2018). Effect of organic additives on physiochemical properties and antioxidant release from chitosan-gelatin composite films to fatty food simulant. International Journal of Biological Macromolecules, 114, 844–850. https://doi.org/10.1016/j.ijbiomac.2018.03.122
112. Zou, P., Yang, X., Wang, J., Li, Y., Yu, H., Zhang, Y., Liu, G. (2016). Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chemistry, 190, 1174–1181. https://doi.org/10.1016/j.foodchem.2015.06.076
Review
For citations:
Kabanov V.L., Novinyuk L.V. CHITOSAN APPLICATION IN FOOD TECHNOLOGY: A REVIEW OF RESCENT ADVANCES. Food systems. 2020;3(1):10-15. https://doi.org/10.21323/2618-9771-2020-3-1-10-15